首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The oxidation of SiGe film epitaxial grown on top of SOI wafers has been studied. These SiGe/SOI samples were oxidized at 700, 900, 1100 °C. Germanium atoms were rejected from SiGe film to SOI layer. A new Si1−xGex (x is minimal) layer formed at SiGe/Si interface. As the germanium atoms diffused, the new Si1−xGex (x is minimal) layer moved to Si/SiO2 interface. Propagation of threading dislocation in SiGe film to SOI substrate was hindered by the new SiGe/Si interface. Strain in SOI substrate transferred from SiGe film was released through dislocation nucleation and propagation inner. The relaxation of SiGe film could be described as: strain relaxed through strain equalization and transfer process between SiGe film and SOI substrates. Raman spectroscopy was used to characterize the strain of SiGe film. Microstructure of SiGe/SOI was observed by transmission electron microscope (TEM).  相似文献   

2.
This paper presents the use of the simple annealing technique at 1000 °C to produce the helical nanostructures of SiOx. We have employed the Co-coated Si substrates, with Co layer and Si substrate utilized as catalyst and Si source, respectively. Beside the ordinary straight nanowires, the helical nanowires such as nanosprings and nanorings were observed. The product was an amorphous structure of SiOx. We have discussed the possible growth mechanism. Photoluminescence spectrum of the SiOx nanostructures showed a blue emission at 428 nm and a green emission at 534 nm, respectively.  相似文献   

3.
Direct wafer bonding between high-density-plasma chemical vapour deposited (HDP-CVD) oxide and thermal oxide (TO) has been investigated. HDP-CVD oxides, about 230 nm in thickness, were deposited on Si(0 0 1) control wafers and the wafers of interest that contain a thin strained silicon (sSi) layer on a so-called virtual substrate that is composed of relaxed SiGe (∼4 μm thick) on Si(0 0 1) wafers. The surfaces of the as-deposited HDP-CVD oxides on the Si control wafers were smooth with a root-mean-square (RMS) roughness of <1 nm, which is sufficiently smooth for direct wafer bonding. The surfaces of the sSi/SiGe/Si(0 0 1) substrates show an RMS roughness of >2 nm. After HDP-CVD oxide deposition on the sSi/SiGe/Si substrates, the RMS roughness of the oxide surfaces was also found to be the same, i.e., >2 nm. To use these wafers for direct bonding the RMS roughness had to be reduced below 1 nm, which was carried out using a chemo-mechanical polishing (CMP) step. After bonding the HDP-CVD oxides to thermally oxidized handle wafers, the bonded interfaces were mostly bubble- and void-free for the silicon control and the sSi/SiGe/Si(0 0 1) wafers. The bonded wafer pairs were then annealed at higher temperatures up to 800 °C and the bonded interfaces were still found to be almost bubble- and void-free. Thus, HDP-CVD oxide is quite suitable for direct wafer bonding and layer transfer of ultrathin sSi layers on oxidized Si wafers for the fabrication of novel sSOI substrates.  相似文献   

4.
Silicon carbide (SiC) is a candidate material for electronic devices to operate upon crucial environment. Electronic states of silicides and/or carbide/graphite formed in metal/SiC contact system are fundamentally important from the viewpoint of device performance.We study interface electronic structure of iron thin film deposited on silicon (Si)- and carbon (C)-face of 4H-SiC(0 0 0 1) by using a soft X-ray emission spectroscopy (SXES). For specimens of Fe (50 nm)/4H-SiC (substrate) contact systems annealed at 700 and 900 °C, the Si L2,3 emission spectra indicate different shapes and peak energies from the substrate depending on thermal-treated temperature. The product of materials such as silicides is suggested. Further, from comparison of Si L2,3 emission spectra between Si- and C-face for the same annealing temperature at 700 °C, it is concluded that the similar silicides and/or ternary materials are formed on the two surfaces. However for those of 900 °C, the film on substrate is composed of the different silicide and/or ternary materials.  相似文献   

5.
Si quantum dots (QDs) embedded in SiO2 can be normally prepared by thermal annealing of SiOx (x < 2) thin film at 1100 °C in an inert gas atmosphere. In this work, the SiOx thin film was firstly subjected to a rapid irradiation of CO2 laser in a dot by dot scanning mode, a process termed as pre-annealing, and then thermally annealed at 1100 °C for 1 h as usual. The photoluminescence (PL) intensity of Si QD was found to be enhanced after such pre-annealing treatment. This PL enhancement is not due to the additional thermal budget offered by laser for phase separation, but attributed to the production of extra nucleation sites for Si dots within SiOx by laser irradiation, which facilitates the formation of extra Si QDs during the subsequent thermal annealing.  相似文献   

6.
SiC thin films were grown on Si (1 0 0) substrates by excimer laser ablation of a SiC target in vacuum. The effect of deposition temperature (up to 950 °C), post-deposition annealing and laser energy on the nanostructure, bonding and crystalline properties of the films was studied, in order to elucidate their transition from an amorphous to a crystalline phase. Infra-red spectroscopy shows that growth at temperatures greater than 600 °C produces layers with increasingly uniform environment of the Si-C bonds, while the appearance of large crystallites is detected, by X-ray diffraction, at 800 °C. Electron paramagnetic resonance confirms the presence of clustered paramagnetic centers within the sp2 carbon domains. Increasing deposition temperature leads to a decrease of the spin density and to a temperature-dependent component of the EPR linewidth induced by spin hopping. For films grown below 650 °C, post-deposition annealing at 1100 °C reduces the spin density as a result of a more uniform Si-C nanostructure, though large scale crystallization is not observed. For greater deposition temperatures, annealing leads to little changes in the bonding properties, but suppresses the temperature dependent component of the EPR linewidth. These findings are explained by a relaxation of the stress in the layers, through the annealing of the bond angle disorder that inhibits spin hopping processes.  相似文献   

7.
8.
SiOx films were deposited on Si(1 0 0) substrates by evaporation of SiO powder. The samples were annealed from room-temperature (RT) to 1100 °C. After the samples were cooled down to RT, photoluminescence (PL) spectra from these samples were measured. It was found that when the annealing temperature Ta is not higher than 1000 °C, there is a PL centered at 620 nm, and with Ta increasing the intensity increases at first and then decreases when Ta is higher than 500 °C. When Ta is no less than 1000 °C another PL peak located at 720 nm appears. Combined with Raman and XRD spectra, we confirm that the latter PL is from Si nanocrystals that start to form when Ta is higher than 1000 °C. PL spectra for Ta<900 °C were discussed in detail and was attributed to defects in the matrix rather than from Si clusters.  相似文献   

9.
Series of CoxCr1−x thin films have been evaporated under vacuum onto Si (1 0 0) and glass substrates. Chemical composition and interface properties have been studied by modelling Rutherford backscattering spectra (RBS) using SIMNRA programme. Thickness ranges from 17 to 220 nm, and x from 0.80 to 0.88. Simulation of the energy spectra shows an interdiffusion profile in the thickest films, but no diffusion is seen in thinner ones. Microscopic characterizations of the films are done with X-ray diffraction (XRD) measurements. All the samples are polycrystalline, with an hcp structure and show a 〈0 0 0 1〉 preferred orientation. Atomic force microscopies (AFM) reveal very smooth film surfaces.  相似文献   

10.
(Pb0.95Ca0.05)(Nb0.02Zr0.80Ti0.20)O3 [PCNZT] thin films were deposited on the Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by RF magnetron sputtering with and without a LaNiO3 [LNO] buffer layer. Ca and Nb elements in PZT films enhance the ferroelectric property, LaNiO3 buffer layer improves the crystal quality of the PCNZT thin films. PCNZT thin films possess better ferroelectric property than that of PZT films for Ca and Nb ion substitution, moreover, PCNZT thin films with a LNO buffer layer possess (1 0 0) orientation and good ferroelectric properties with high remnant polarization (Pr = 38.1 μC/cm2), and low coercive field (Ec = 65 kV/cm), which is also better than that of PCNZT thin films without a LNO buffer layer (Pr = 27.9 μC/cm2, Ec = 74 kV/cm). The result shows that enhanced ferroelectric property of PZT films can be obtained by ion substitution and buffer layer.  相似文献   

11.
We have investigated the growth of iron disilicide on Au-coated Si(0 0 1) substrates and its photoluminescence behaviour. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy observations revealed that the Si surface above 380 °C was melted as a result of the Au-Si eutectic reaction and that coarse island disilicide grains with sizes of several micrometres were formed on the Si surface. The full width at half maximum of 0.056° on the rocking curve of α-FeSi2004 was observed on the sample deposited at 800 °C, and indicated the high crystal quality in perfection of orientation. The photoluminescence spectrum of β-FeSi2 grains, which were deposited at 750 °C, was observed. The melted Si surface contributed to the improved crystallinity of α-FeSi2 and β-FeSi2.  相似文献   

12.
Preferentially oriented half-metallic NiMnSb thin films have been fabricated by pulsed-laser deposition on Si(1 0 0) substrates. A nonmagnetic insulating MnOx layer was formed on the NiMnSb grain boundaries due to exposure to the air. In addition to the magnetism, transport properties of the grain-surface-oxided NiMnSb films have been investigated. The insulating conduction and significant magnetoresistance of the NiMnSb films were found to be associated with the insulating manganite oxide layer on the surface of NiMnSb grains.  相似文献   

13.
S. Pal 《Applied Surface Science》2007,253(6):3317-3325
Tungsten oxide (WO3) thin films were deposited by a modified hot filament chemical vapor deposition (HFCVD) technique using Si (1 0 0) substrates. The substrate temperature was varied from room temperature to 430 °C at an interval of 100 °C. The influence of the substrate temperature on the structural and optical properties of the WO3 films was studied. X-ray diffraction and Raman spectra show that as substrate temperature increases the film tends to crystallize from the amorphous state and the surface roughness decreases sharply after 230 °C as confirmed from AFM image analysis. Also from the X-ray analysis it is evident that the substrate orientation plays a key role in growth. There is a sharp peak for samples on Si substrate due to texturing. The film thickness also decreases as substrate temperature increases. UV-vis spectra show that as substrate temperature increases the film property changes from metallic to insulating behavior due to changing stoichiometry, which was confirmed by XPS analysis.  相似文献   

14.
In this work we present the results of comparative XPS and PYS studies of electronic properties of the space charge layer of the L-CVD SnO2 thin films after air exposure and subsequent UHV annealing at 400 °C, with a special emphasis on the interface Fermi level position.From the centre of gravity of binding energy of the main XPS Sn 3d5/2 line the interface Fermi level position EF − Ev in the band gap has been determined. It was in a good correlation with the value estimated from the offset of valence band region of the XPS spectrum, as well as from the photoemission yield spectroscopy (PYS) measurements. Moreover, from the valence band region of the XPS spectrum and PYS spectrum two different types of filled electronic band gap states of the L-CVD SnO2 thin films have been derived, located at 6 and 3 eV with respect to the Fermi level.  相似文献   

15.
Si doped and undoped nanocrystalline aluminum nitride thin films were deposited on various substrates by direct current sputtering technique. X-ray diffraction analysis confirmed the formation of phase pure hexagonal aluminum nitride with a single peak corresponding to (1 0 0) reflection of AlN with lattice constants, a = 0.3114 nm and c = 0.4986 nm. Energy dispersive analysis of X-rays confirmed the presence of Si in the doped AlN films. Atomic force microscopic studies showed that the average particle size of the film prepared at substrate temperature 200 °C was 9.5 nm, but when 5 at.% Si was incorporated the average particle size increased to ∼21 nm. Field emission study indicated that, with increasing Si doping concentration, the emission characteristics have been improved. The turn-on field (Eto) was 15.0 (±0.7) V/μm, 8.0 (±0.4) V/μm and 7.8 (±0.5) V/μm for undoped, 3 at.% and 5 at.% Si doped AlN films respectively and the maximum current density of 0.27 μA/cm2 has been observed for 5 at.% Si doped nanocrystalline AlN film. It was also found that the dielectric properties were highly dependent on Si doping.  相似文献   

16.
β-FeSi2 thin films were prepared on Si (1 1 1) substrates by pulsed laser deposition (PLD) with a sintering FeSi2 target and an electrolytic Fe target. The thin films without micron-size droplets were prepared using the electrolytic Fe target; however, the surface without droplets was remarkably rougher using the Fe target than using the FeSi2 target. After deposition at 600 °C and then annealing at 900 °C for 20 h, XRD indicated that the thin film prepared using the Fe target had a poly-axis-orientation, but that prepared using the FeSi2 target had a one-axis-orientation. The PL spectra of the thin films prepared using the FeSi2 and Fe targets at a growth temperature of 600 °C and subsequently annealed at 900 °C for 20 h had A-, B- and C-bands. Moreover, it was found that the main peak at 0.808 eV (A-band) in the PL spectrum of the thin films prepared using the FeSi2 target was the intrinsic luminescence of β-FeSi2 from the dependence of PL peak energy on temperature and excitation power density.  相似文献   

17.
Ta-N thin films were deposited on AISI 317L stainless steel (SS) substrates by cathodic arc deposition (CAD) at substrate biases of −50 and −200 V. The as-deposited films were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray analysis (EDX). The results show that stoichiometric TaN with hexagonal lattice (3 0 0) preferred orientation was achieved at the bias of −200 V. On the other hand, Ta-rich Ta-N thin film deposited at −50 V shows amorphous nature. According to the XPS result, Ta element in the films surface exist in bonded state, including the Ta-N bonds characterized by the doublet (Ta 4f7/2 = 23.7 eV and Ta 4f5/2 = 25.7 eV). Electrochemical properties of the Ta-N coated stainless steel systems were investigated using potentiodynamic polarization and electrochemical impedance spectroscope (EIS) in Hank's solution at 37 °C. For the Ta-N coated samples, the corrosion current (icorr) is two or three orders of magnitude lower than that of the uncoated ones, indicating a significantly improved corrosion resistance. Growth defects in the Ta-N thin films produced by CAD, however, play a key role in the corrosion process, especially the localised corrosion. Using the polarization fitting and the EIS modelling, we compared the polarization resistance (Rp) and the porosity (P) of the Ta-N coatings deposited at different biases. It seems that Ta-N film with comparatively lower bias (−50 V) shows better corrosion behavior in artifical physiological solution. That may be attributed to the effect of ion bombarding, which can be modulated by the substrate bias.  相似文献   

18.
HgCdTe thin films have been deposited on Si(1 1 1) substrates at different substrate temperatures by pulsed laser deposition (PLD). An Nd:YAG pulsed laser with a wavelength of 1064 nm was used as laser source. The influences of the substrate temperature on the crystalline quality, surface morphology and composition of HgCdTe thin films were characterized by X-ray diffraction (XRD), selected area electron diffraction (SAED), atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy (EDS). The results show that in our experimental conditions, the HgCdTe thin films deposited at 200 °C have the best quality. When the substrate temperature is over 250 °C, the HgCdTe film becomes thermodynamically unstable and the quality of the film is degraded.  相似文献   

19.
In this study, we report growth and characterization of GaN layers on (1 0 0)- and (1 1 1)-oriented silicon-on-insulator (SOI) substrates. Using metalorganic chemical vapor deposition (MOCVD) technique, GaN layers are grown on KOH treated Si (1 0 0) overlayers of thin SIMOX SOI substrates. Growth of GaN on such surface with an AlN buffer leads to c-axis orientated textured GaN. This is evident from high-resolution X-ray diffraction (HRXRD) measurement, which shows a much broader rocking curve linewidth. Significantly enhanced photoluminescence (PL) intensity and partial stress relaxation is observed in GaN layers grown on these SOI substrates. Furthermore, GaN grown on (1 1 1)-oriented bonded SOI substrates shows good surface morphology and improved optical quality. Micro-Raman, micro-PL, and HRXRD measurements reveal single crystalline hexagonal GaN oriented along (0 0 0 1) direction. We also report growth and characterization of InGaN/GaN multi-quantum well structures on (1 1 1)-oriented bonded SOI. Such an approach to realize nitride epilayers would be useful to fabricate GaN-based micro-opto-electromechanical systems (MOEMS) and sensors.  相似文献   

20.
ZnO thin films with different thickness (the sputtering time of ZnO buffer layers was 10 min, 15 min, 20 min, and 25 min, respectively) were first prepared on Si substrates using radio frequency magnetron sputtering system and then the samples were annealed at 900 °C in oxygen ambient. Subsequently, a GaN epilayer about 500 nm thick was deposited on ZnO buffer layer. The GaN/ZnO films were annealed in NH3 ambient at 950 °C. X-ray diffraction (XRD), atom force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) were used to analyze the structure, morphology, composition and optical properties of GaN films. The results show that their properties are investigated particularly as a function of the sputtering time of ZnO layers. For the better growth of GaN films, the optimal sputtering time is 15 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号