首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZrOxNy thin films have been prepared by radio frequency magnetron sputtering at various substrate temperatures. The effect of substrate temperature on structural, optical properties and energy-band alignments of as-deposited ZrOxNy thin films are investigated. Atomic force microscopy results indicate the decreased root-mean-square (rms) values with substrate temperature. Fourier transform infrared spectroscopy spectra indicate that an interfacial layer has been formed between Si substrate and ZrOxNy thin films during deposition. X-ray photoelectron spectroscopy and spectroscopy ellipsometry (SE) results indicate the increased nitrogen incorporation in ZrOxNy thin films and therefore, the decreased optical band gap (Eg) values as a result of the increased valence-band maximum and lowered conduction-band minimum.  相似文献   

2.
Spinel LiNixMn2−xO4 (x≤0.9) thin films were synthesized by a sol-gel method employing spin-coating. The Ni-doped films were found to maintain cubic structure at low x but to exhibit a phase transition to tetragonal structure for x≥0.6. Such cubic-tetragonal phase transition can be explained in terms of Ni3+(d7) ions with low-spin (t2g6,eg1) configuration occupying the octahedral sites of the compound, thus being subject to the Jahn-Teller effect. By X-ray photoelectron spectroscopy both Ni3+ and Ni2+ ions were detected where Ni2+ is more populated than Ni3+. Optical properties of the LiNixMn2−xO4 films were investigated by spectroscopic ellipsometry in the visible-ultraviolet range. The measured dielectric function spectra mainly consist of broad absorption structures attributed to charge-transfer transitions, O2−(2p)→Mn4+(3d) for 1.9 (t2g) and 2.8-3.0 eV (eg) structures and O2−(2p)→Mn3+(3d) for 2.3 (t2g) and 3.4-3.6 eV (eg) structures. Also, sharp absorption structures were observed at about 1.6, 1.7, and 1.9 eV, interpreted as being due to d-d crystal-field transitions within the octahedral Mn3+ ion. In terms of these transitions, the evolution of the optical absorption spectrum of LiMn2O4 by Ni doping could be explained and the related electronic structure parameters were obtained.  相似文献   

3.
An epitsucial γ-Mg2SiO4 thin film can be a good buffer between the Si substrate and some oxide thin films. For high temperature superconducting multilayer structures, hopefully it can be taken as an insulating layer to replace the widely used MgO film. To explore such possibilities, we carry out systematic studies on the influences of pressure and substrate temperature on the epitaxy of γ-Mg2SiO4 thin films grown on Si (100) substrates using rf magnetron sputtering with an Mg target of purity of 99.95 percent. With the substrate temperature kept at 500℃ and the pressure changing from lO Pa to 15 Pa, in the XRD spectra the 7-Mg2SiO4 (400) peak grows drastically while the MgO (200) peak is suppressed. Keeping the pressure at 15Pa and increasing the temperature from 500℃ to 570℃ further can improve the film epitaxy, while working at 780℃ and 11Pa seems to give very good results. X-ray photoelectronic spectroscopy and φ scan are used to characterize the stoichiometry, crystallinity, and in-plane growth of the samples.  相似文献   

4.
Amorphous Lu2O3 high-k gate dielectrics were grown directly on n-type (100) Si substrates by the pulsed laser deposition (PLD) technique. High-resolution transmission electron microscope (HRTEM) observation illustrated that the Lu2O3 film has amorphous structure and the interface with Si substrate is free from amorphous SiO2. An equivalent oxide thickness (EOT) of 1.1 nm with a leakage current density of 2.6×10−5 A/cm2 at 1 V accumulation bias was obtained for 4.5 nm thick Lu2O3 thin film deposited at room temperature followed by post-deposition anneal (PDA) at 600 °C in oxygen ambient. The effects of PDA process and light illumination were studied by capacitance-voltage (C-V) and current density-voltage (J-V) measurements. It was proposed that the net fixed charge density and leakage current density could be altered significantly depending on the post-annealing conditions and the capability of traps to trap and release charges.  相似文献   

5.
The growth and properties of gadolinium oxide (Gd2O3) films prepared by anodic oxidation were investigated. Uniform Gd2O3 thin film with good oxide quality was obtained. The X-ray diffraction (XRD) pattern of the Gd2O3 films showed that they had a poly-crystalline structure. The dielectric constants of Gd2O3 films oxidized at 30 and 60 V are 9.4 and 12.2, respectively. The equivalent oxide thickness (EOT) of the Gd2O3 stacked oxide is in the range of 5.8-9.4 nm. The MOS capacitor with Gd2O3 exhibits interesting electrical properties. Longer oxidation time reduced the leakage current density for 30 V anodic oxidation but increased the leakage current density for 60 V anodic oxidation. This work reveals that Gd2O3 could also be an alternative dielectric for Si substrate and therefore, might pave the way to fabricate CMOS devices in the future.  相似文献   

6.
M. Liu  G. He  Q. Fang  G.H. Li 《Applied Surface Science》2006,252(18):6206-6211
High-k HfO2-Al2O3 composite gate dielectric thin films on Si(1 0 0) have been deposited by means of magnetron sputtering. The microstructure and interfacial characteristics of the HfO2-Al2O3 films have been investigated by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and spectroscopic ellipsometry (SE). Analysis by XRD has confirmed that an amorphous structure of the HfO2-Al2O3 composite films is maintained up to an annealing temperature of 800 °C, which is much higher than that of pure HfO2 thin films. FTIR characterization indicates that the growth of the interfacial SiO2 layer is effectively suppressed when the annealing temperature is as low as 800 °C, which is also confirmed by spectroscopy ellipsometry measurement. These results clearly show that the crystallization temperature of the nanolaminate HfO2-Al2O3 composite films has been increased compared to pure HfO2 films. Al2O3 as a passivation barrier for HfO2 high-k dielectrics prevents oxygen diffusion and the interfacial layer growth effectively.  相似文献   

7.
Ba(ZrxTi1−x)O3 (BZT) (x = 0.20 and 0.30) thin films are deposited on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrate by sol-gel method. X-ray diffraction patterns show that the thin films have a good crystallinity. Optical properties of the films in the wavelength range of 2.5-12 μm are studied by infrared spectroscopic ellipsometry (IRSE). The optical constants of the BZT thin films are determined by fitting the IRSE data using a classical dispersion formula. As the wavelength increases, the refractive index decreases, while the extinction coefficients increase. The effective static ionic charges are derived, which are smaller than that in a purely ionic material for the BZT thin films.  相似文献   

8.
ZrO2 thin films were produced by limited reaction sputtering process varying the deposition parameters. An interesting growth phenomenon was observed in the initial growth stage of amorphous samples, appearing to suppress film growth for the first several minutes. The structures of such ultrathin ZrO2 films were investigated by high-resolution Rutherford backscattering (HR-RBS) and X-ray photoelectron spectroscopy (XPS). The results suggest that the existence of interfacial suboxides due to the adsorption-induced surface reaction and diffusion-induced internal reaction, lead to the deteriorated interfacial performance. The mechanism and effects of the growth delay time on the interfacial characteristics are discussed in detail.  相似文献   

9.
High-k Ti1−xSixO2 gate dielectric layers were prepared at room temperature by RF magnetron sputtering using SiO2 and TiO2 targets to investigate their applicability to transparent thin-film transistors as well as metal-oxide-semiconductor field-effect transistors. Based on XRD and XPS analyses, it was found that, regardless of the deposition time, the Ti1−xSixO2 gate dielectric layers had more stable Si-based phases with stronger Si-O bonds with increasing SiO2 RF power. As SiO2 RF power increased, the capacitance of the dielectric layers decreased due to the higher fraction of the Si-based phases, and the leakage current decreased, dominantly because of the decrease in oxygen vacancies due to the formation of stoichiometric SiO2. The Ti1−xSixO2 gate dielectric layers exhibited high transparency above 80% and moderate bandgap of 4.1-4.2 eV, which can be applied to transparent thin-film transistors.  相似文献   

10.
Thin films of Pb1−xCaxTiO3 [x=0.20, 0.24 and 0.28] have been prepared on ITO coated Corning glass substrates by sol gel technique. The perovskite phase of PCT films is formed at 650 °C with a polycrystalline tetragonal structure. The tetragonal factor (c/a) decreases with increasing Ca concentration. Dielectric, pyroelectric and ferroelectric studies have been carried out on these films. The effects of introduction of Ca ion in PbTiO3 have also been discussed.  相似文献   

11.
Zr-Ti and Hf-Ti composite nitrates were successfully developed as single-source precursors for the chemical vapor deposition (CVD) of ZrxTi1−xO2 and HfxTi1−xO2 thin films. The Zr-Ti nitrate can be assumed as a solid solution of the individual Zr and Ti nitrates, and the Zr/Ti molar ratio in the deposited ZrxTi1−xO2 films is consistent with that in the precursor. The Hf-Ti nitrate appears to be a mixture of the Hf and Ti nitrates and the composition of the deposited HfxTi1−xO2 films depends remarkably on the heating time of precursor. Both ZrxTi1−xO2 and HfxTi1−xO2 films exhibit trade-off properties between band gap and dielectric constant. The obtained results suggest that ZrxTi1−xO2 and HfxTi1−xO2 films are promising candidates for gate dielectric application to improve the scalability and reduce the leakage current of the future complementary metal-oxide-semiconductor (CMOS) devices.  相似文献   

12.
Z.G. Hu  Y.W. Li  Z.Q. Zhu 《Physics letters. A》2008,372(24):4521-4526
Ferroelectric BaTiO3 nanocrystalline films (BTNFs) with the crystalline sizes of about 30 nm were grown on Pt/Ti/SiO2/Si substrates by a modified sol-gel method. Spectroscopic ellipsometry (SE) was used to characterize the films in the photon energy range of 1.5-5.0 eV with a five-phase layered model (air/surface rough layer/BaTiO3/interface layer/Pt). The optical properties in the transparent and absorption regions have been investigated with the Forouhi-Bloomer dispersion relation. With the aid of the structural and dielectric function models, the microstructure and electronic structure of the BTNFs can be readily obtained. It was found that the refractive index reaches the value of 2.20 in the transparent region. Based on the Sellmeier dispersion analysis, the single-oscillator energy is about 4.7 eV for the BTNFs. The long wavelength refractive index n(0) can be estimated to about 2.00 at zero point. The direct optical band gap energy approaches approximately 4.2 eV and Urbach band tail energy is 262±2 and 268±1 meV respectively with increasing crystalline size. A higher band gap observed can be owing to the known quantum confinement effect in the nanocrystalline formation and different fraction of amorphous and crystalline components. The theoretical analysis based on the effective mass approximation theory is well used to explain these experimental data.  相似文献   

13.
Band bending and band alignment at HfO2/SiO2/Si and HfO2/Hf/SiO2/Si interfaces were investigated using X-ray photoelectron spectroscopy. After Hf-metal pre-deposition, a 0.55 eV band bending in Si and a 1.80 eV binding energy decrease for Hf 4f and O 1s of HfO2 were observed. This was attributed to the introduction of negative space charges at interface by Hf pre-deposition. Band bending decrease and synchronous binding energy increases of O 1s and Hf 4f for HfO2 were observed during initial Ar+ sputtering of the Hf pre-deposited sample. This was interpreted through the neutralization of negative space charges by sputtering-induced oxygen vacancies.  相似文献   

14.
C. Zhu 《Physics letters. A》2007,372(1):81-86
Using Landau-Devonshire (LD)-type phenomenological model, we investigate the phase diagrams and dielectric behaviors of single-domain single-crystal Ba0.6Sr0.4TiO3 films deposited on orthorhombic substrates. An anisotropic strain factor is introduced to quantitatively calculate the effects of anisotropic in-plane misfit strains. Investigation indicates that anisotropic strains play a crucial role on formation of stable ferroelectric phases and dielectric properties. The anisotropic strains induce tetragonal phases which only contain one in-plane spontaneous polarization component. These phases do not exist in BST films of the same composition under isotropic strains. Moreover, permittivity and tunability of films can reach to maximum when the corresponding spontaneous polarization component disappears at the boundaries of structural phase transition.  相似文献   

15.
L. Shi 《Applied Surface Science》2007,253(7):3731-3735
As a potential gate dielectric material, the La2O3 doped SiO2 (LSO, the mole ratio is about 1:5) films were fabricated on n-Si (0 0 1) substrates by using pulsed laser deposition technique. By virtue of several measurements, the microstructure and electrical properties of the LSO films were characterized. The LSO films keep the amorphous state up to a high annealing temperature of 800 °C. From HRTEM and XPS results, these La atoms of the LSO films do not react with silicon substrate to form any La-compound at interfacial layer. However, these O atoms of the LSO films diffuse from the film toward the silicon substrate so as to form a SiO2 interfacial layer. The thickness of SiO2 layer is only about two atomic layers. A possible explanation for interfacial reaction has been proposed. The scanning electron microscope image shows the surface of the amorphous LSO film very flat. The LSO film shows a dielectric constant of 12.8 at 1 MHz. For the LSO film with thickness of 3 nm, a small equivalent oxide thickness of 1.2 nm is obtained. The leakage current density of the LSO film is 1.54 × 10−4 A/cm2 at a gate bias voltage of 1 V.  相似文献   

16.
HfNxOy thin films were deposited on Si substrates by direct current sputtering at room temperature. The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). SEM indicates that the film is composed of nanoparticles. AFM indicates that there are no sharp protrusions on the surface of the film. XRD pattern shows that the films are amorphous. The field electron emission properties of the film were also characterized. The turn-on electric field is about 14 V/μm at the current density of 10 μA/cm2, and at the electric field of 24 V/μm, the current density is up to 1 mA/cm2. The field electron emission mechanism of the HfNxOy thin film is also discussed.  相似文献   

17.
Amorphous La-doped Al2O3 (La: Al2O3) thin films are deposited on n-type (100) Si substrates by rf magnetron co-sputterlng. The composition of the deposited films is measured by energy dispersive x-ray spectroscopy: Capacitance-voltage measurement shows that the dielectric constant k of La-doped Al2O3 films ranges from 8.5 to 11.6 with the increasing La content, and the highest k value of 11.6 is obtained for the 20.14% La content film. In the structure of the Al/La:Al2O3/Si metal oxide semiconductor, the dominant conduction stems from the space- charge-limited current at different temperatures. In addition, the wavelength dependence of the transmittance is studied by ultraviolet spectroscopy and the band gap of all the deposited films is above 5.5eV. The results demonstrate that La-doped Al2O3 can meet the requirement of next-generation gate materials.  相似文献   

18.
In the present paper, we investigate the effect of thermal annealing on optical and microstructural properties of HfO2 thin films (from 20 to 190 nm) obtained by plasma ion assisted deposition (PIAD). After deposition, the HfO2 films were annealed in N2 ambient for 3 h at 300, 350, 450, 500 and 750 °C. Several characterisation techniques including X-ray reflectometry (XRR), X-ray diffraction (XRD), spectroscopic ellipsometry (SE), UV Raman and FTIR were used for the physical characterisation of the as-deposited and annealed HfO2 thin films. The results indicate that as-deposited PIAD HfO2 films are mainly amorphous and a transition to a crystalline phase occurs at a temperature higher than 450 °C depending on the layer thickness. The crystalline grains consist of cubic and monoclinic phases already classified in literature but this work provides the first evidence of amorphous-cubic phase transition at a temperature as low as 500 °C. According to SE, XRR and FTIR results, an increase in the interfacial layer thickness can be observed only for high temperature annealing. The SE results show that the amorphous phase of HfO2 (in 20 nm thick samples) has an optical bandgap of 5.51 eV. Following its transition to a crystalline phase upon annealing at 750 °C, the optical bandgap increases to 5.85 eV.  相似文献   

19.
A phenomenological Landau–Devonshire thermodynamic theory is used to describe the effects of anisotropic in-plane misfit strains on equilibrium polarization states and dielectric properties of single domain epitaxial Pb(Zr1−xTix)O3 thin films grown on dissimilar orthorhombic substrates. Compared with the “isotropic in-plane misfit strains-temperature” phase diagrams, the characteristic features of “misfit strain-misfit strain” and “misfit strain-temperature” phase diagrams under the circumstance of strain anisotropy are the presence of four different phases (aa, aa, acac, and acac) and the direct 90° polarization switching between c   phase and aa phase (or aa phase), between aa phase and aa phase. The misfit strain dependence of polarization components, the small-signal dielectric responses and the tunabilities at room temperature are also calculated. We find that the phase diagrams and dielectric properties largely depend on anisotropic in-plane misfit strains as well. Moreover, the strain anisotropy will lead to the polarization and dielectric anisotropy.  相似文献   

20.
Bi4Ti3O12 (BiT), Bi3.25La0.75Ti3O12 (BLT), Bi4−x/3Ti3−xNbxO12 (BTN) and Bi3.25−x/3La0.75Ti3−xNbxO12 (BLTN) thin films have been prepared by pulsed laser deposition. BTN and BLTN films exhibit a maximum in the remanent polarization Pr at a Nb content x=0.018. At this Nb content, the BLTN film has a Pr value (25 μC/cm2) that is much higher than that of BiT and a coercive field similar to that of BiT. The polarization of this BLTN film is fatigue-free up to 109 switching cycles. The high fatigue resistance is mainly due to the substitution of Bi3+ ions by La3+ ions at the A site and the enhanced Pr arises largely from the replacement of Ti4+ ions by Nb5+ ions at the B site. The mechanisms behind the effects of the substitution at the two sites are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号