首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A W/Ti/Au multilayer scheme has been fabricated for achieving thermally stable low-resistance ohmic contact to n-type GaN (4.0 × 1018 cm−3). It is shown that the as-deposited W/Ti/Au contact exhibits near linear I-V behaviour. However, annealing at temperature below 800 °C the contacts exhibit non-linear behaviour. After annealing at a temperature in excess of 850 °C, the W/Ti/Au contact showed ohmic behaviour. The W/Ti/Au contact produced specific contact resistance as low as 6.7 × 10−6 Ω cm2 after annealing at 900 °C for 1 min in a N2 ambient. It is noted that the specific contact resistance decreases with increase in annealing temperature. It is also noted that annealing the contacts at 900 °C for 30 min causes insignificant degradation of the electrical and thermal properties. It is further shown that the overall surface morphology of the W/Ti/Au stayed fairly smooth even after annealing at 900 °C. The W/Ti/Au ohmic contact showed good edge sharpness after annealing at 900 °C for 30 min. Based on the Auger electron spectroscopy and glancing angle X-ray diffraction results, possible explanation for the annealing dependence of the specific contact resistance of the W/Ti/Au contacts are described and discussed.  相似文献   

2.
The annealing temperature dependence of contact resistance and layer stability of ZrB2/Ti/Au and Ni/Au/ZrB2/Ti/Au Ohmic contacts on p-GaN is reported. The as-deposited contacts are rectifying and transition to Ohmic behavior for annealing at ≥750 °C, a significant improvement in thermal stability compared to the conventional Ni/Au Ohmic contact on p-GaN, which is stable only to <600 °C. A minimum specific contact resistance of ∼2 × 10−3 Ω cm−2 was obtained for the ZrB2/Ti/Au after annealing at 800 °C while for Ni/Au/ZrB2/Ti/Au the minimum value was 10−4 Ω cm−2 at 900 °C. Auger Electron Spectroscopy profiling showed significant Ti, Ni and Zr out diffusion at 750 °C in the Ni/Au/ZrB2/Ti/Au while the Ti and Zr intermix at 900 °C in the ZrB2/Ti/Au. These boride-based contacts show promise for contacts to p-GaN in high temperature applications.  相似文献   

3.
X-ray diffraction (XRD) patterns revealed that the as-grown and annealed Al-doped ZnO (AZO) films grown on the n-Si (1 0 0) substrates were polycrystalline. Transmission electron microscopy (TEM) images showed that bright-contrast regions existed in the grain boundary, and high-resolution TEM (HRTEM) images showed that the bright-contrast regions with an amorphous phase were embedded in the ZnO grains. While the surface roughness of the AZO film annealed at 800 °C became smoother, those of the AZO films annealed at 900 and 1000 °C became rougher. XRD patterns, TEM images, selected-area electron diffraction patterns, HRTEM images, and atomic force microscopy (AFM) images showed that the crystallinity in the AZO thin films grown on the n-Si (1 0 0) substrates was enhanced resulting from the release in the strain energy for the AZO thin films due to thermal annealing at 800 °C. XRD patterns and AFM images show that the crystallinity of the AZO thin films annealed at 1000 °C deteriorated due to the formation of the amorphous phase in the ZnO thin films.  相似文献   

4.
The specific contact resistivity and chemical intermixing of Ti/Au and Ti/Al/Pt/Au Ohmic contacts on n-type Zn0.05Cd0.95O layers grown on ZnO buffer layers on GaN/sapphire templates is reported as a function of annealing temperature in the range 200-600 °C. A minimum contact resistivity of 2.3 × 10−4 Ω cm2 was obtained at 500 °C for Ti/Al/Pt/Au and 1.6 × 10−4 Ω cm2 was obtained at 450 °C for Ti/Al. These values also correspond to the minima in transfer resistance for the contacts. The Ti/Al/Pt/Au contacts show far smoother morphologies after annealing even at 600 °C, whereas the Ti/Au contacts show a reacted appearance after 350 °C anneals. In the former case, Pt and Al outdiffusion is significant at 450 °C, whereas in the latter case the onset of Ti and Zn outdiffusion is evident at the same temperature. The improvement in contact resistance with annealing is suggested to occur through formation of TiOx phases that induce oxygen vacancies in the ZnCdO.  相似文献   

5.
Thermal stability of Ag layer on Ti coated Si substrate for different thicknesses of the Ag layer have been studied. To do this, after sputter-deposition of a 10 nm Ti buffer layer on the Si(1 0 0) substrate, an Ag layer with different thicknesses (150-5 nm) was sputtered on the buffer layer. Post annealing process of the samples was performed in an N2 ambient at a flow rate of 200 ml/min in a temperature range from 500 to 700 °C for 30 min. The electrical property of the heat-treated multilayer with the different thicknesses of Ag layer was examined by four-point-probe sheet resistance measurement at the room temperature. Phase formation and crystallographic orientation of the silver layers were studied by θ-2θ X-ray diffraction analysis. The surface topography and morphology of the heat-treated films were determined by atomic force microscopy, and also, scanning electron microscopy. Four-point- probe electrical measurement showed no considerable variation of sheet resistance by reducing the thickness of the annealed Ag films down to 25 nm. Surface roughness of the Ag films with (1 1 1) preferred crystallographic orientation was much smaller than the film thickness, which is a necessary condition for nanometric contact layers. Therefore, we have shown that the Ag layers with suitable nano-thicknesses sputtered on 10 nm Ti buffer layer were thermally stable up to 700 °C.  相似文献   

6.
Gang Li  Jing Lu 《Applied Surface Science》2009,255(16):7323-7328
Well-ordered TiO2 nanotube arrays were prepared by electrochemical anodization of titanium in aqueous electrolyte solution of H3PO4 + NH4F at a constant voltage of 20 V for 3 h, followed by calcined at various temperatures. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Photoluminescence (PL) were used to characterize the samples. The results showed that the as-prepared nanotube arrays before being calcined were amorphous and could transform to anatase phase at a heat treatment temperature higher than 400 °C. As the calcination temperatures increased, crystallization of anatase phase enhanced and rutile phase appeared at 600 °C. However, further increasing the calcination temperature would cause the collapse of nanotube arrays. PL intensity of the nanotube arrays annealed at 500 °C was the lowest, which was probably ascribed to better crystallization together with fewer surface defects of the nanotube arrays.  相似文献   

7.
Ohmic contact formation on n-GaN using a novel Ti/Al/W2B/Ti/Au metallization scheme was studied using contact resistance, scanning electron microscopy and Auger electron spectroscopy measurements. A minimum specific contact resistivity of 7 × 10−6 Ω cm2 was achieved at an annealing temperature of 800 °C. The contact resistance was essentially independent of measurement temperature, indicating that field emission plays a dominant role in the current transport .The Ti began to outdiffuse to the surface at temperatures of ∼500 °C, while at 800 °C the Al also began to intermix within the contact. By 1000 °C, the contact showed a reacted appearance and AES showed almost complete intermixing of the metallization. The contact resistance showed excellent stability for extended periods at 200 °C, which simulates the type of device operating temperature that might be expected for operation of GaN-based power electronic devices.  相似文献   

8.
The use of a TiB2 diffusion barrier for Ni/Au contacts on p-GaN is reported. The annealing temperature (25-950 °C) dependence of ohmic contact characteristics using a Ni/Au/TiB2/Ti/Au metallization scheme deposited by sputtering were investigated by contact resistance measurements and auger electron spectroscopy (AES). The as-deposited contacts are rectifying and transition to ohmic behavior for annealing at ≥500 °C . A minimum specific contact resistivity of ∼3 × 10−4 Ω cm−2 was obtained after annealing over a broad range of temperatures (800-950 °C for 60 s). The contact morphology became considerably rougher at the higher end of this temperature range. AES profiling showed significant Ti and Ni outdiffusion through the TiB2 at 800 °C. By 900 °C the Ti was almost completely removed to the surface, where it became oxidized. Use of the TiB2 diffusion barrier produces superior thermal stability compared to the more common Ni/Au, whose morphology degrades significantly above 500 °C.  相似文献   

9.
The contacts of Ti/Au, Ti/Al/Au, and Ti/Al/Ni/Au films deposited on n-GaN were studied by current–voltage (I–V) and transmission-line-method measurements. The effect of annealing temperature on specific contact resistivity has been investigated by changing the annealing temperature from 400 to 900 °C. Ti/Al/Au and Ti/Al/Ni/Au films were superior to the bilayer (Ti/Au) in ohmic contact characteristics and thermal stability. The Ti/Al/Ni/Au composite showed the best thermal stability due to the fact that Ni plays a more important role than the alloy of Ti/Al in preventing the interdiffusion of Ti, Al, and Au. The lowest contact resistivity (10-7cm2) to n-GaN was obtained for the Ti/Al/Ni/Au sample by short-time/high-temperature annealing. The formation mechanism of ohmic contacts to n-GaN is also discussed. PACS 73.40.Cg; 73.61.Ey  相似文献   

10.
The epitaxial growth of doped ZnO films is of great technological importance. Present paper reports a detailed investigation of Sc-doped ZnO films grown on (1 0 0) silicon p-type substrates. The films were deposited by sol-gel technique using zinc acetate dihydrate as precursor, 2-methoxyethanol as solvent and monoethanolamine (MEA) as a stabilizer. Scandium was introduced as dopant in the solution by taking 0.5 wt%1 of scandium nitrate hexahydrate. The effect of annealing on structural and photoluminescence properties of nano-textured Sc-doped films was investigated in the temperature range of 300-550 °C. Structural investigations were carried out using X-ray diffraction, scanning electron microscopy and atomic force microscopy. X-ray diffraction study revealed that highly c-axis oriented films with full-width half maximum of 0.21° are obtained at an annealing temperature of 400 °C. The SEM images of ZnO:Sc films have revealed that coalescence of ZnO grains occurs due to annealing. Ostwald ripening was found to be the dominant mass transport mechanism in the coalescence process. A surface roughness of 4.7 nm and packing density of 0.93 were observed for the films annealed at 400 °C. Room temperature photoluminescence (PL) measurements of ZnO:Sc films annealed at 400 °C showed ultraviolet peak at about (382 nm) with FWHM of 141 meV, which are comparable to those found in high-quality ZnO films. The films annealed below or above 400 °C exhibited green emission as well. The presence of green emission has been correlated with the structural changes due to annealing. Reflection high energy electron diffraction pattern confirmed the nearly epitaxial growth of the films.  相似文献   

11.
The thermal stability and measurement temperature dependence of Schottky contact characteristics on n-GaN using a W2B5/Ti/Au metallization scheme was studied using current-voltage (I-V), scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) measurements. The elemental profile obtained from samples annealed at 350 °C showed some titanium diffusion into the gold layer but little other difference from the as-deposited wafer. Annealing at 700 °C produced significant diffusion of titanium. The Schottky barrier height increased with anneal temperature up to 200 °C, reaching a maximum value of 0.65 eV, but decreased at higher annealing temperatures. The reverse breakdown voltage from diodes fabricated using the W2B5-based contacts showed a similar dependence. The reverse current magnitude was larger than predicted by thermionic emission alone. The barrier height showed only minor changes with measurement temperature up to 150 °C.  相似文献   

12.
We have designed a promising contact scheme to p-GaN. Au/NiOx layers with a low concentration of O in NiOx are deposited on p-GaN by reactive dc magnetron sputtering and annealed in N2 and in a mixture of O2 + N2 to produce low resistivity ohmic contacts. Annealing has been studied of NiOx layers with various contents of oxygen upon the electrical properties of Au/NiOx/p-GaN. It has been found that the Au/NiOx/p-GaN structure with a low content of oxygen in NiOx layer provides a low resistivity ohmic contact even after subsequent annealing in N2 or O2 + N2 ambient at 500 °C for 2 min.Auger depth profiles and transmission electron microscopy (TEM) micrographs reveal that while annealing in O2 + N2 ambient results in reconstruction of the initial deposited Au/NiOx/p-GaN contact structure into a Au/p-NiO/p-GaN structure, annealing in N2 brings about reconstruction into Au/p-NiO/p-GaN and Ni/p-NiO/p-GaN structures. Hence, in both cases, after annealing in N2 as well as in O2 + N2 ambient, the ohmic properties of the contacts are determined by creation of a thin oxide layer (p-NiO) on the metal/p-GaN interface. Higher contact resistivities in the samples annealed in O2 + N2 ambient are most likely caused by a smaller effective area of the contact due to creation of voids.  相似文献   

13.
ZnO thin films with different thickness (the sputtering time of ZnO buffer layers was 10 min, 15 min, 20 min, and 25 min, respectively) were first prepared on Si substrates using radio frequency magnetron sputtering system and then the samples were annealed at 900 °C in oxygen ambient. Subsequently, a GaN epilayer about 500 nm thick was deposited on ZnO buffer layer. The GaN/ZnO films were annealed in NH3 ambient at 950 °C. X-ray diffraction (XRD), atom force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) were used to analyze the structure, morphology, composition and optical properties of GaN films. The results show that their properties are investigated particularly as a function of the sputtering time of ZnO layers. For the better growth of GaN films, the optimal sputtering time is 15 min.  相似文献   

14.
In this work, we have studied thermal stability of nanoscale Ag metallization and its contact with CoSi2 in heat-treated Ag(50 nm)/W(10 nm)/Co(10 nm)/Si(1 0 0) multilayer fabricated by sputtering method. To evaluate thermal stability of the systems, heat-treatment was performed from 300 to 900 °C in an N2 ambient for 30 min. All the samples were analyzed by four-point-probe sheet resistance measurement (Rs), Rutherford backscattering spectrometry (RBS), X-ray diffractometry (XRD), and atomic force microscopy (AFM). Based on our data analysis, no interdiffiusion, phase formation, and Rs variation was observed up to 500 °C in which the Ag layer showed a (1 1 1) preferred crystallographic orientation with a smooth surface and Rs of about 1 Ω/□. At 600 °C, a sharp increase of Rs value was occurred due to initiation of surface agglomeration, WSi2 formation, and interdiffusion between the layers. Using XRD spectra, CoSi2 formed at the Co/Si interface preventing W silicide formation at 750 and 800 °C. Meantime, RBS analysis showed that in this temperature range, the W acts as a cap layer, so that we have obtained a W encapsulated Ag/CoSi2 contact with a smooth surface. At 900 °C, the CoSi2 layer decomposed and the layers totally mixed. Therefore, we have shown that in Ag/W/Co/Si(1 0 0) multilayer, the Ag nano-layer is thermally stable up to 500 °C, and formation of W-capped Ag/CoSi2 contact with Rs of 2 Ω/□ has been occurred at 750-800 °C.  相似文献   

15.
Rectifying contact formation on n-type bulk single crystal ZnO using novel W2B or W2B5 metallization schemes was studied using current-voltage, scanning electron microscopy and Auger electron spectroscopy (AES) measurements. When a single Au overlayer was used to reduce the metal sheet resistance, the contacts were ohmic for all annealing conditions due to outdiffusion of Zn through the metal. By sharp contrast, when a bilayer of Pt/Au was used on top of the boride layers, rectifying contacts with barrier heights of ∼0.4 eV for W2B were obtained. The highest barrier height of 0.66 eV was achieved for W2B5 annealed at 600 °C, although at this condition the contact showed a reacted appearance and AES showed almost complete intermixing of the metallization.  相似文献   

16.
Titanium dioxide (TiO2) films were fabricated by cosputtering titanium (Ti) target and SiO2 or Si slice with ion-beam-sputtering deposition (IBSD) technique and were postannealed at 450 °C for 6 h. The variations of oxygen bonding, which included high-binding-energy oxygen (HBO), bridging oxygen (BO), low-binding-energy oxygen (LBO), and three chemical states of titanium (Ti4+, Ti3+ and Ti2+) were analyzed by X-ray photoelectron spectroscopy (XPS). The enhancement of HBO and reduction of BO in O 1s spectra as functions of SiO2 or Si amount in cosputtered film imply the formation of Si-O-Ti linkage. Corresponding increase of Ti3+ in Ti 2p spectra further confirmed the property modification of the cosputtered film resulting from the variation of the chemical bonding. An observed correlation between the chemical structure and optical properties, refractive index and extinction coefficient, of the SiO2 or Si cosputtered films demonstrated that the change of chemical bonding in the film results in the modification of optical properties. Furthermore, it was found that the optical properties of the cosputtered films were strongly depended on the cosputtering targets. In case of the Si cosputtered films both the refractive indices and extinction coefficients were reduced after postannealing, however, the opposite trend was observed in SiO2 cosputtered films.  相似文献   

17.
Silicon carbide (SiC) is a candidate material for electronic devices to operate upon crucial environment. Electronic states of silicides and/or carbide/graphite formed in metal/SiC contact system are fundamentally important from the viewpoint of device performance.We study interface electronic structure of iron thin film deposited on silicon (Si)- and carbon (C)-face of 4H-SiC(0 0 0 1) by using a soft X-ray emission spectroscopy (SXES). For specimens of Fe (50 nm)/4H-SiC (substrate) contact systems annealed at 700 and 900 °C, the Si L2,3 emission spectra indicate different shapes and peak energies from the substrate depending on thermal-treated temperature. The product of materials such as silicides is suggested. Further, from comparison of Si L2,3 emission spectra between Si- and C-face for the same annealing temperature at 700 °C, it is concluded that the similar silicides and/or ternary materials are formed on the two surfaces. However for those of 900 °C, the film on substrate is composed of the different silicide and/or ternary materials.  相似文献   

18.
BaZr0.1Ti0.9O3 and BaZr0.2Ti0.8O3 (BZT) thin films were deposited on Pt/Ti/LaAlO3 (1 0 0) substrates by radio-frequency magnetron sputtering, respectively. The films were further annealed at 800 °C for 30 min in oxygen. X-ray diffraction θ-2θ and Φ-scans showed that BaZr0.1Ti0.9O3 films displayed a highly (h 0 0) preferred orientation and a good cube-on-cube epitaxial growth on the LaAlO3 (1 0 0) substrate, while there are no obvious preferential orientation in BaZr0.2Ti0.8O3 thin films. The BaZr0.1Ti0.9O3 films possess larger grain size, higher dielectric constant, larger tunability, larger remanent polarization and coercive electric field than that of BaZr0.2Ti0.8O3 films. Whereas, BaZr0.1Ti0.9O3 films have larger dielectric losses and leakage current density. The results suggest that Zr4+ ion can decrease dielectric constant and restrain non-linearity. Moreover, the enhancement in dielectric properties of BaZr0.1Ti0.9O3 films may be attributed to (1 0 0) preferred orientation.  相似文献   

19.
Thin films of eight metals with a thickness of 150 nm were deposited on mica substrates by thermal evaporation at various temperatures in a high vacuum. The surface morphology of the metal films was observed by atomic force microscopy (AFM) and the images were characterized quantitatively by a roughness analysis and a bearing analysis (surface height analysis). The films of Au, Ag, Cu, and Al with the high melting points were prepared at homologous temperatures T/Tm = 0.22-0.32, 0.40, and 0.56. The films of In, Sn, Bi, and Pb with the low melting points were prepared at T/Tm = 0.55-0.70, where T and Tm are the absolute temperatures of the mica substrate and the melting point of the metal, respectively. The surface morphology of these metal films was studied based on a structure zone model. The film surfaces of Au, Ag, and Cu prepared at the low temperatures (T/Tm = 0.22-0.24) consist of small round grains with diameters of 30-60 nm and heights of 2-7 nm. The surface heights of these metal films distribute randomly around the surface height at 0 nm and the morphology is caused by self-shadowing during the deposition. The grain size becomes large due to surface diffusion of adatoms and the film surfaces have individual characteristic morphology and roughnesses as T increases. The surface of the Al film becomes very smooth as T increases and the atomically smooth surface is obtained at T/Tm = 0.56-0.67 (250-350 °C). On the other hand, the atomically smooth surface of the Au film is obtained at T/Tm = 0.56 (473 ± 3 °C). The films of In, Sn, Bi, and Pb prepared at T/Tm = 0.55-0.70 also show the individual characteristic surface morphology.  相似文献   

20.
Commercial nitinol wire is oxidised at 480-530 °C/10 min in air. Surface morphology and chemistry is studied in detail using scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction, Raman spectrometry and X-ray photoelectron spectroscopy. It is found that the main oxidation product at both temperatures is rutile containing a few at.% Ni. Beneath the rutile layer, there are titanium sub-oxides, showing characteristic maxima in depth profiles. Nickel in an oxidised state is present on the surface, whereas in a sub-surface region of scales, there is only metallic nickel. Thickness of the total oxide layers is 70 and 140 nm after oxidation at 480 and 530 °C, respectively. The preferential oxidation of titanium causes the formation of a Ni-enriched and Ti-depleted zone, suggesting the presence of Ni3Ti phase. XRD reveals that the presence of cubic B2 NiTi phase in the base alloy is not affected by oxidation at 480-530 °C/10 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号