首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ZnO thin films were fabricated using zinc chloride and zinc acetate precursors by the spray pyrolysis technique on FTO coated glass substrates. The ZnO films were grown in different deposition temperature ranges varying from 400 to 550 °C. Influences of substrate temperature and zinc precursors on crystal structure, morphology and optical property of the ZnO thin films were investigated. XRD patterns of the films deposited using chloride precursor indicate that (1 0 1) is dominant at low temperatures, while those deposited using acetate precursor show that (1 0 1) is dominant at high temperatures. SEM images show that deposition temperature and type of precursor have a strong effect on the surface morphology. Optical measurements show that ZnO films are obviously influenced by the substrate temperatures and different types of precursor solutions. It is observed that as temperature increases, transmittance decreases for ZnO films obtained using zinc chloride precursor, but the optical transmittance of ZnO films obtained using zinc acetate precursor increases as temperature increases.  相似文献   

2.
In this paper, the effect of annealing temperature on optical constants was studied. The ZnO films were deposited on microscopic glass substrates using the sol-gel method for various annealing temperatures. The deposited zinc oxide (ZnO) films were characterized by an X-ray diffractometer (XRD), a spectrophotometer and scanning electron microscopy (SEM). The transmittance spectra recorded through the spectrophotometer exhibits 90% transmittance. The XRD spectra showed polycrystalline nature of ZnO film. Optical constants were determined through transmittance spectra using an envelope method. It was found that there was a significant effect of annealing temperature on the refractive index and extinction coefficient of deposited ZnO films. In this experiment, the optimum refractive index value of 1.97 was obtained at 350 °C annealing temperature at visible (vis) wavelength. The optical energy gap was found to be of ∼3.2 eV for all the samples. The top view of SEM showed the ZnO grain growth on the glass substrates.  相似文献   

3.
In this study, ZnO thin films were fabricated using the rf magnetron sputtering method and their piezoelectrical and optical characteristics were investigated for various substrate temperatures. The ZnO thin film has the largest crystallization orientation for the (0 0 2) peak and the smallest FWHM value of 0.56° at a substrate temperature of 200 °C. The surface morphology shows a relatively dense surface structure at 200 °C compared to the other substrate temperatures. The surface roughness shows the smallest of 1.6 nm at a substrate temperature of 200 °C. The piezoelectric constant of the ZnO thin film measured using the pneumatic loading method (PLM) has a maximum value of 11.9 pC/N at a substrate temperature of 200 °C. The transmittance of the ZnO thin film measured using spectrophotometry with various substrate temperatures ranged from 75 to 93% in the visible light region. By fitting the refractive index from the transmittance to the Sellmeir dispersion relation, we can predict the refractive index of the ZnO thin film according to the wavelength. In the visible light range, the refraction index of the ZnO thin film deposited at a substrate temperature of 200 °C is the range of 1.88-2.08.  相似文献   

4.
Al-doped ZnO (ZnO:Al) thin films with different Al contents were deposited on Si substrates using the radio frequency reactive magnetron sputtering technique. X-ray diffraction (XRD) measurements showed that the crystallinity of the films was promoted by appropriate Al content (0.75 wt.%). Then the ZnO:Al film with Al content of 0.75 wt.% was annealed in vacuum at different temperatures. XRD patterns revealed that the residual compressive stress decreased at higher annealing temperatures. While the surface roughness of the ZnO:Al film annealed at 300 °C became smoother, those of the ZnO:Al films annealed at 600 and 750 °C became rougher. The photoluminescence (PL) measurements at room temperature revealed a violet, two blue and a green emission. The origin of these emissions was discussed and the mechanism of violet and blue emission of ZnO:Al thin films were suggested. We concluded that the defect centers are mainly ascribed to antisite oxygen and interstitial Zn in annealed (in vacuum) ZnO:Al films.  相似文献   

5.
The growth of c-axis oriented ZnO thin films on c-plane Al2O3 via molecular beam epitaxy (MBE) using dilute ozone (O3) as an oxygen source was investigated. Four-circle X-ray diffraction (XRD) indicates that films grown at 350 °C are epitaxial with respect to the substrate, but with a broad in-plane and out-of-plane mosaic. The films were highly conductive and n-type. Epitaxial film growth required relatively high Zn flux and O3/O2 pressure. The growth rate decreased rapidly as growth temperature was increased above 350 °C. The drop in growth rate with temperature reflects the low sticking coefficient of Zn at moderately high temperatures and limited ozone flux for the oxidation of the Zn metal. Characterization of the films included atomic force microscopy (AFM), X-ray diffraction, photoluminescence, and Hall measurements. These results show that molecular beam epitaxy of ZnO using ozone is rate limited by the ozone flux for growth temperatures above 350 °C.  相似文献   

6.
Zinc oxide (ZnO) thin films were deposited on microscope glass substrates by sol-gel spin coating method. Zinc acetate (ZnAc) dehydrate was used as the starting salt material source. A homogeneous and stable solution was prepared by dissolving ZnAc in the solution of monoethanolamine (MEA). ZnO thin films were obtained after preheating the spin coated thin films at 250 °C for 5 min after each coating. The films, after the deposition of the eighth layer, were annealed in air at temperatures of 300 °C, 400 °C and 500 °C for 1 h. The effect of thermal annealing in air on the physical properties of the sol-gel derived ZnO thin films are studied. The powder and its thin film were characterized by X-ray diffractometer (XRD) method. XRD analysis revealed that the annealed ZnO thin films consist of single phase ZnO with wurtzite structure (JCPDS 36-1451) and show the c-axis grain orientation. Increasing annealing temperature increased the c-axis orientation and the crystallite size of the film. The annealed films are highly transparent with average transmission exceeding 80% in the visible range (400-700 nm). The measured optical band gap values of the ZnO thin films were between 3.26 eV and 3.28 eV, which were in the range of band gap values of intrinsic ZnO (3.2-3.3 eV). SEM analysis of annealed thin films has shown a completely different surface morphology behavior.  相似文献   

7.
Doped zinc oxide thin films are grown on glass substrate at room temperature under oxygen atmosphere, using pulsed laser deposition (PLD). O2 pressure below 1 Pa leads to conductive films. A careful characterization of the film stoichiometry and microstructure using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) concludes on a decrease in crystallinity with Al and Ga additions (≤3%). The progressive loss of the (0 0 2) orientation is associated with a variation of the c parameter value as a function of the film thickness and substrate nature. ZnO:Al and ZnO:Ga thin films show a high optical transmittance (>80%) with an increase in band gap from 3.27 eV (pure ZnO) to 3.88 eV and 3.61 eV for Al and Ga doping, respectively. Optical carrier concentration, optical mobility and optical resistivity are deduced from simulation of the optical data.  相似文献   

8.
In this work, thin films of zinc oxide (ZnO) for gas-sensor applications were deposited on platinum coated alumina substrate, using electrostatic spray deposition (ESD) technique. As precursor solution zinc acetate in ethanol was used. Scanning electron microscopy (SEM) evaluation showed a porous and homogeneous film morphology and the energy dispersive X-ray analysis (EDX) confirmed the composition of the films with no presence of other impurities. The microstructure studied with X-ray diffraction (XRD) and Raman spectroscopy indicated that the ZnO oxide films are crystallized in a hexagonal wurtzite phase. The films showed good sensitivity to 1 ppm nitrogen dioxide (NO2) at 300 °C while a much lower sensitivity to 12 ppm hydrogen sulphide (H2S).  相似文献   

9.
Zinc oxide (ZnO) thin films were deposited on LiNbO3 (LN) single crystals with 200 nm thicknesses by three different ways, where coating of zinc (Zn) film was followed by thermal oxidation for four, two, and one steps with 50, 100, and 200 nm thicknesses repeatedly. Sample, which was produced at 4-step of deposition and oxidation of Zn layer, showed high transmittance and low structural defect due to a lower photoluminescence intensity and Urbach energy. Average grain size in X-ray diffraction (XRD), scanning electron microscopy (SEM) micrograph, and atomic force microscopy (AFM) images for multilayer of ZnO was lower than monolayer of ZnO thin films. Applying multilayer coating technique leads to decrease of surface roughness and scattering on light on surface and fabrication of LiNbO3 waveguides with lower optical loss.  相似文献   

10.
The development of cost-effective and low-temperature synthesis techniques for the growth of high-quality zinc oxide thin films is paramount for fabrication of ZnO-based optoelectronic devices, especially ultraviolet (UV)-light-emitting diodes, lasers and detectors. We demonstrate that the properties, especially UV emission, observed at room temperature, of electrodeposited ZnO thin films from chloride medium (at 70 °C) on fluor-doped tin oxide (FTO) substrates is strongly influenced by the post-growth thermal annealing treatments. X-ray diffraction (XRD) measurements show that the films have preferably grown along (0 0 2) direction. Thermal annealing in the temperature range of 150-400 °C in air has been carried out for these ZnO thin films. The as-grown films contain chlorine which is partially removed after annealing at 400 °C. Morphological changes upon annealing are discussed in the light of compositional changes observed in the ZnO crystals that constitute the film. The optical quality of ZnO thin films was improved after post-deposition thermal treatment at 150 °C and 400 °C in our experiments due to the reducing of defects levels and of chlorine content. The transmission and absorption spectra become steeper and the optical bandgap red shifted to the single-crystal value. These findings demonstrate that electrodeposition have potential for the growth of high-quality ZnO thin films with reduced defects for device applications.  相似文献   

11.
Al-doped ZnO (AZO) transparent conductive thin films were grown by magnetron sputtering with AZO (98 wt.% ZnO, 2 wt.% Al2O3) ceramic target in Ar + H2 ambient at a relatively low temperature of 100 °C. To investigate the dependence of crystalline and properties of as-grown AZO films on the H2-flux, X-ray diffraction (XRD), X-ray photoemission spectrometer (XPS), Hall and transmittance spectra measurements were employed to analyze the AZO samples deposited with different H2-flux. The results indicate that H2-flux has a considerable influence on the transparent conductive properties of AZO films. The resistivity of 4.15 × 10−4 Ω cm and the average transmittance of more than 94% in the visible range were obtained with the optimal H2-flux of 1.0 sccm. Such a low temperature growing method present here may be especially useful for some low-melting point photoelectric devices and substrates.  相似文献   

12.
Pure and Cu-doped ZnO (ZnO:Cu) thin films were deposited on glass substrates using radio frequency (RF) reactive magnetron sputtering. The effect of substrate temperature on the crystallization behavior and optical properties of the ZnO:Cu films have been studied. The crystal structures, surface morphology and optical properties of the films were systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer, respectively. The results indicated that ZnO films showed a stronger preferred orientation toward the c-axis and a more uniform grain size after Cu-doping. As for ZnO:Cu films, the full width at half maxima (FWHM) of (0 0 2) diffraction peaks decreased first and then increased, reaching a minimum of about 0.42° at 350 °C and the compressive stress of ZnO:Cu decreased gradually with the increase of substrate temperature. The photoluminescence (PL) spectra measured at room temperature revealed two blue and two green emissions. Intense blue-green luminescence was obtained from the sample deposited at higher substrate temperature. Finally, we discussed the influence of annealing temperature on the structural and optical properties of ZnO:Cu films. The quality of ZnO:Cu film was markedly improved and the intensity of blue peak (∼485 nm) and green peak (∼527 nm) increased noticeably after annealing. The origin of these emissions was discussed.  相似文献   

13.
Zinc oxide (ZnO) and aluminium-doped zinc oxide (ZnO:Al) thin films were prepared by RF diode sputtering at varying deposition conditions. The effects of negative bias voltage and RF power on structural and optical properties were investigated. X-ray diffraction measurements (XRD) confirmed that both un-doped and Al-doped ZnO films are polycrystalline and have hexagonal wurtzite structure. The preferential 〈0 0 1〉 orientation and surface roughness evaluated by AFM measurements showed dependence on applied bias voltage and RF power. The sputtered ZnO and ZnO:Al films had high optical transmittance (>90%) in the wavelength range of 400-800 nm, which was not influenced by bias voltage and RF power. ZnO:Al were conductive and highly transparent. Optical band gap of un-doped and Al-doped ZnO thin films depended on negative bias and RF power and in both cases showed tendency to narrowing.  相似文献   

14.
X-ray diffraction (XRD) patterns revealed that the as-grown and annealed Al-doped ZnO (AZO) films grown on the n-Si (1 0 0) substrates were polycrystalline. Transmission electron microscopy (TEM) images showed that bright-contrast regions existed in the grain boundary, and high-resolution TEM (HRTEM) images showed that the bright-contrast regions with an amorphous phase were embedded in the ZnO grains. While the surface roughness of the AZO film annealed at 800 °C became smoother, those of the AZO films annealed at 900 and 1000 °C became rougher. XRD patterns, TEM images, selected-area electron diffraction patterns, HRTEM images, and atomic force microscopy (AFM) images showed that the crystallinity in the AZO thin films grown on the n-Si (1 0 0) substrates was enhanced resulting from the release in the strain energy for the AZO thin films due to thermal annealing at 800 °C. XRD patterns and AFM images show that the crystallinity of the AZO thin films annealed at 1000 °C deteriorated due to the formation of the amorphous phase in the ZnO thin films.  相似文献   

15.
We used a metal-organic chemical vapor deposition (MOCVD) method to grow ZnO films on MgAl2O4 (1 1 1) substrate, and succeeded in preparing films with microstructures from well-aligned ZnO nanorods to continuous and dense films by adjusting the ratio of the input rates of oxygen and zinc sources (VI/II). At the growth temperature of 350 °C, the ZnO nanorods were formed under a low flow rate of a zinc precursor. On the other hand, continuous and dense ZnO films were formed under a high flow rate of the zinc precursor. There is a transition zone at medium zinc precursor flow rate, where nanorods transform to dense films. We proved that the height of ZnO nanorods and the thickness of ZnO dense films both increase with zinc flow rate, and are consistent with the mass-transport mechanism for ZnO growth. The XRD spectra of the sample in the transition zone show both (0 0 2) and (1 0 1) peaks, where (1 0 1) peaks are formed only in the transition zone. We consider that there are (0 0 2) and (1 0 1) ZnO grains in the early growth stage of dense ZnO films.  相似文献   

16.
Highly transparent and conductive Boron doped zinc oxide (ZnO:B) thin films were deposited using chemical spray pyrolysis (CSP) technique on glass substrate. The effect of variation of boron doping concentration in reducing solution on film properties was investigated. Low angle X-ray analysis showed that the films were polycrystalline fitting well with a hexagonal wurtzite structure and have preferred orientation in [002] direction. The films with resistivity 2.54×10−3 Ω-cm and optical transmittance >90% were obtained at optimized boron doping concentration. The optical band gap of ZnO:B films was found ∼3.27 eV from the optical transmittance spectra for the as-deposited films. Due to their excellent optical and electrical properties, ZnO:B films are promising contender for their potential use as transparent window layer and electrodes in solar cells.  相似文献   

17.
In this paper, zinc oxide (ZnO) and cerium-doped zinc oxide (ZnO:Ce) films were deposited by reactive chemical pulverization spray pyrolysis technique using zinc and cerium chlorides as precursors. The effects of Ce concentration on the structural and optical properties of ZnO thin films were investigated in detail. These films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) measurements. All deposited ZnO layers at the temperature 450 °C are polycrystalline and indicate highly c-axis oriented structure. The dimension of crystallites depends on incorporation of Ce atoms into the ZnO films. The photoluminescence spectra of the films have been studied as a function of the deposition parameters such as doping concentrations and post grows annealing. Photoluminescence spectra were measured at the temperature range from 13 K to 320 K.  相似文献   

18.
In the present work we studied the influence of the dopant elements and concentration on the microstructural and electrochemical properties of ZnO thin films deposited by spray pyrolysis. Transparent conductive thin films of zinc oxide (ZnO) were prepared by the spray pyrolysis process using an aqueous solution of zinc acetate dehydrate [Zn(CH3COO)2·2H2O] on soda glass substrate heated at 400 ± 5 °C. AlCl3, MgCl2 and NiCl2 were used as dopant. The effect of doping percentage (2–4%) has been investigated. Afterwards the samples were thermally annealed in an ambient air during one hour at 500 °C. X-ray diffraction showed that films have a wurtzite structure with a preferential orientation along the (0 0 2) direction for doped ZnO. The lattice parameters a and c are estimated to be 3.24 and 5.20 ?, respectively. Transmission allowed to estimate the band gaps of ZnO layers. The electrochemical studies revealed that the corrosion resistance of the films depended on the concentration of dopants.  相似文献   

19.
We have prepared SrTiO3/BaTiO3 thin films with multilayered structures deposited on indium tin oxide (ITO) coated glass by a sol-gel deposition and heating at 300-650 °C. The optical properties were obtained by UV-vis spectroscopy. The films show a high transmittance (approximately 85%) in the visible region. The optical band gap of the films is tunable in the 3.64-4.19 eV range by varying the annealing temperature. An abrupt decrease towards the bulk band gap value is observed at annealing temperatures above 600 °C. The multilayered film annealed at 650 ° C exhibited the maximum refractive index of 2.09-1.91 in the 450-750 nm wavelength range. The XRD and AFM results indicate that the films annealed above 600 ° C are substantially more crystalline than the films prepared at lower temperatures which were used to change their optical band gap and complex refractive index to an extent that depended on the annealing temperature.  相似文献   

20.
ZnO thin films were prepared by thermal oxidation of Zn metal at 400 °C for 30 and 60 min. The XRD results showed that the Zn metal was completely converted to ZnO with a polycrystalline structure. The sensors had a maximum response to H2 at 400 °C and showed stable behavior for detecting H2 gases in the range of 40 to 160 ppm. The film oxidized for 60 min in oxygen flow exhibited higher response than that of the 30 min oxidation which was approximately 4000 for 160 ppm H2 gas concentration. The sensing mechanism was modeled according to the oxygen-vacancy model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号