首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structures containing silicon nanocrystals (nc-Si) are very promising for Si-based light-emitting devices. Using a technology compatible with that of silicon, a broader wavelength range of the emitted photoluminescence (PL) was obtained with nc-Si/SiO2 multilayer structures. The main characteristic of these structures is that both layers are light emitters. In this study we report results on a series of nc-Si/SiO2 multilayer periods deposited on 200 nm thermal oxide SiO2/Si substrate. Each period contains around 10 nm silicon thin films obtained by low-pressure chemical vapour deposition at T=625°C and 100 nmSiO2 obtained by atmospheric pressure chemical vapour deposition T=400°C. Optical and microstructural properties of the multilayer structures have been studied by spectroscopic ellipsometry (using the Bruggemann effective medium approximation model for multilayer and multicomponent films), FTIR and UV–visible reflectance spectroscopy. IR spectroscopy revealed the presence of SiOx structural entities in each nc-Si/SiO2 interface. Investigation of the PL spectra (using continuous wave-CW 325 nm and pulsed 266 nm laser excitation) has shown several peaks at 1.7, 2, 2.3, 2.7, 3.2 and 3.7 eV, associated with the PL centres in SiO2, nc-Si and Si–SiO2 interface. Their contribution to the PL spectra depends on the number of layers in the stack.  相似文献   

2.
Metal antibacterial reagents are effective in the enhancement of the antimicrobial properties of medical polymers. However, incorporation of metal antibacterial reagents into polymers using conventional methods usually results in unstable antimicrobial effects. Our previous research demonstrates that plasma immersion ion implantation (PIII) can be used to effectively incorporate metal antibacterial reagents such as Cu into polyethylene (PE) in the near surface region up to several hundred nanometers without causing noticeable damage to the polymer matrix. In this work, various gases including NH3, O2, and N2 were plasma-implanted in concert with Cu plasma immersion ion implantation to study the effects of these gas species on the release rate of Cu from the substrate. Our experimental results reveal that the copper depth profiles are not affected significantly by NH3, O2, or N2 co-implantation and these gas elements have similar depth profiles as Cu. Chemical analyses demonstrate that polar functional CO, CO, CN, CN, and CN bonds formed in the substrate play an important role in regulating Cu out-diffusion. Among the three gas species, N2 shows the best effects in regulating Cu out-diffusion and produces the best long term antibacterial properties. The Cu retention and out-diffusion mechanism in the ion-implanted polyethylene is described.  相似文献   

3.
La2TeO6:Eu3+ nanophosphors were prepared by Pechini sol-gel process, using lanthanide nitrates and telluric acid as precursor. X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TG), photoluminescence spectra (PL) and fluorescence lifetime were used to characterize the resulting phosphors. The results of XRD indicate that all samples crystallized completely at 1023 K and are isostructural with the orthorhombic La2TeO6. SEM study reveals that the samples have a strong tendency to form agglomerates with an average size ranging from 50 to 80 nm. The photoluminescence intensity and chromaticity were improved for excitation at 254 and 395 nm. The optimized phosphor La1.80Eu0.10TeO6 could be considered as an efficient red-emitting phosphor for solid-state lighting devices based on GaN LEDs.  相似文献   

4.
The optical and acoustic properties of tellurite glasses in the system TeO2/ZrO2/WO3 have been investigated. The refractive index at different wavelengths and the optical spectra of the glasses have been measured. From the refractive index and absorption edge studies for prepared glasses, the optical parameter viz; optical band gap (Eopt), Urbach energy, (ΔE), dispersion energy, Ed, and the average oscillator energy, E0, have been calculated. Sound velocities were measured by pulse echo technique. From these velocities and densities values, various elastic moduli were calculated. The variations in the refractive index, optical energy gap and elastic moduli with WO3 content have been discussed in terms of the glass structure. Quantitatively, we used the bond compression model for analyzing the room temperature elastic moduli data. By calculating the number of bonds per unit volume, the average stretching force constant, and the average ring size we can extract valuable information about the structure of the present glasses.  相似文献   

5.
The present work reports new experimental and numerical results of the combustion properties of hydrogen based mixtures diluted by nitrogen and steam. Spherical expanding flames have been studied in a spherical bomb over a large domain of equivalence ratios, initial temperatures and dilutions at an initial pressure of 100 kPa (Tini = 296, 363, 413 K; N2/O2 = 3.76, 5.67, 9; %Steam = 0, 20, 30). From these experiments, the laminar flame speed SL0, the Markstein length L’, the activation energy Ea and the Zel'dovich β number have been determined. These parameters were also simulated using COSILAB® in order to verify the validity of the Mével et al. [1] detailed kinetic mechanism. Other parameters as the laminar flame thickness δ and the effective Lewis number Leeff were also simulated. These new results aim at providing an extended database that will be very useful in the hydrogen combustion hazard assessment for nuclear reactor power plant new design.  相似文献   

6.
Single crystals of [C5H11NH3]Pb2I5, abbreviated C5Pb2I5, have been prepared. This compound is a new member of the family of the bilayered organic-inorganic lead-iodide based perovskites. Its crystal structure has been determined by X-ray diffraction. The inorganic sub-lattice consists of periodic bilayers of iodoplumbate octahedra. Each PbI6 octahedra exhibits both edge- and corner-sharing with adjacent octahedra. The vibrational properties of this compound have been studied by Raman scattering spectroscopy. Optical absorption, photoluminescence and diffuse reflectance measurements have been performed. The room-temperature bandgap and free exciton absorption bands are observed at 2.46 and 2.23 eV, respectively. The exciton binding energy is 230 meV which is the largest value ever reported till date for the bilayered PbI based perovskites. Calculations assuming Wannier-type quasi-two-dimensional excitons and taking into account the image potential of the exciton charges showed that nearly 64% of the exciton binding energy is due to the dielectric confinement effect.  相似文献   

7.
Optical properties of Si-rich SiO2 films prepared by an RF cosputtering method are discussed. From the infrared and Raman spectroscopy together with the electron microscopy, it is shown that Si mesoscopic particles embedded in solid matrices with the sizes ranging from ˜ 10 nm (nanocrystals) to less than ˜1 nm (clusters) can be obtained by the cosputtering and post-annealing. The absorption and photoluminescence spectra are presented. For our samples, a red luminescence peak analogous to that of porous Si is observed for films containing Si clusters rather than nanocrystals. Raman spectra which evidence the success in the heavy doping of B atoms into Si nanocrystals are also discussed.  相似文献   

8.
UV excited photoluminescence from BaWO4 (BWO) single crystals has been investigated in the temperature range of 77-300 K. The presence of two emission bands in the UV and blue spectral regions is observed under excitation by 230 nm at room temperature. The observation of UV emission band at room temperature is a novel result. The thermal treatment at elevated temperatures under air or vacuum is observed to influence the optical and luminescence properties of the crystal. The changes brought about by annealing in air are found to be reversible. However, in vacuum annealed samples the UV emission is completely quenched.  相似文献   

9.
We report, for the first time on luminescence from a Er3+ doped SrAl2O4 phosphor. Effects of Eu3+ doping were also studied. The influence of rare-earth doping in crystal structure and its optical properties were analysed by means of X-ray diffraction (XRD), Raman scattering, optical absorption, excitation and emission (PL) spectroscopy, thermally stimulated luminescence (TSL) and scanning electron microscope (SEM). Luminescence spectra and luminescence decay curves for Er3+ transitions in the near infrared region were recorded. The PL maximum for Eu doped SrAl2O4 is obtained at 620 nm and corresponds to the orange region of the spectrum. Diffraction patterns reveal a dominant phase, characteristic of the monoclinic SrAl2O4 compound and the presence of dopants has no effect on the basic crystal structure of SrAl2O4. The shapes of the glow curves are different for each dopant irradiated with either a 90Sr-90Y beta source, or UV light at 311 nm, and in detail the TL signals differ somewhat between Er and Eu dopants.  相似文献   

10.
Li2O-CaF2-P2O5 glasses mixed with different concentrations of TiO2 (ranging from 0 to 0.8 mol%) were crystallized at 500 °C. The photo luminescence spectra of these samples excited with the wavelengths corresponding to their absorption edges have been recorded at room temperature. The spectra exhibited an emission band in the wavelength region 470-500 nm. The emission band is identified due to the charge transfer from O2− ion in to empty 3d orbital of octahedrally positioned Ti4+ ions. The analysis of the results further indicates the highest luminescence efficiency for the glass ceramic sample crystallized with 0.6 mol% of TiO2.  相似文献   

11.
An organic-inorganic hybrid perovskite (C4H9NH3)4Pb3I4Br6 was synthesized and studied by X-ray diffraction, Raman and infrared spectroscopies, optical transmission and photoluminescence. The title compound, abbreviated (C4)4Pb3I4Br6, crystallises in a periodic two-dimensional multilayer structure with P21/a space group. The structure is built up from alternating inorganic and organic layers. Each inorganic layer consists of three sheets of PbX6 (X=I, Br) octahedra. Raman and infrared spectra of the title compound were recorded in the 100-3500 and 400-4000 cm−1 frequency ranges, respectively. An assignment of the observed vibration modes is reported. Optical transmission measurements, performed on thin films of (C4)4Pb3I4Br6, revealed two absorption bands at 474 and 508 nm. Photoluminescence measurements have shown a green emission peak at 519 nm.  相似文献   

12.
Nanostructured Gd2O3:Eu3+ and Li+ doped Gd2O3:Eu3+ thin films were prepared by pulsed laser ablation technique. The effects of annealing and Li+ doping on the structural, morphological, optical and luminescent properties are discussed. X-ray diffraction and Micro-Raman investigations indicate a phase transformation from amorphous to nanocrystalline phase and an early crystallization was observed in Li+ doped Gd2O3:Eu3+ thin films on annealing. AFM images of Li+ doped Gd2O3:Eu3+ films annealed at different temperatures especially at 973 K show a spontaneous ordering of the nanocrystals distributed uniformly all over the surface, with a hillocks (or tips) like self-assembly of nanoparticles driven by thermodynamic and kinetic considerations. Enhanced photoemission from locations corresponding to the tips suggest their use in high resolution display devices. An investigation on the photoluminescence of Gd2−xEuxO3 (x=0.10) and Gd2−xyEuxLiyO3 (x=0.10, y=0.08) thin films annealed at 973 K reveals that the enhancement in luminescence intensity of about 3.04 times on Li+ doping is solely due to the increase in oxygen vacancies and the flux effect of Li+ ions. The observed decrease in the values of asymmetric ratio from the luminescence spectra of Li+ doped Gd2O3:Eu3+ films at high temperature region is discussed in terms of increased EuO bond length as a result of Li+ doping.  相似文献   

13.
The monoclinic Ba2ZnSi2O7:Eu2+ blue-green-emitting phosphor and the orthorhombic BaZn2Si2O7:Eu2+ green-emitting phosphor were prepared by combustion-assisted synthesis method as the fluorescent materials for ultraviolet-light-emitting diodes (UV-LEDs) performed as a light source. The crystallinity and luminescence were investigated using X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. Pure monoclinic Ba2ZnSi2O7 and orthorhombic BaZn2Si2O7 crystallize completely at 1100 °C. The doped Eu2+ ions did not cause any significant change in the host structure. The emission spectra presented an emission position red shift of up to 16 nm from Ba2ZnSi2O7:Eu2+ to BaZn2Si2O7:Eu2+. The excitation spectra of Ba2ZnSi2O7:Eu2+ and BaZn2Si2O7:Eu2+ were broad-banding, extending from 260 to 465 nm, which match the emission of UV-LEDs.  相似文献   

14.
Fluorescence-excitation (wing) profiles of the Na-D doublet lines were measured over a wavelength range extending from 0.3 to 200 Å from the line center for the red D1 and blue D2 wings and from 0.3 to 3 Å for the red D2 and the blue D1 wings, respectively. The line profiles were determined with the aid of a tunable CW dye-laser as a background source by measuring the total fluorescence intensity observed on detuning the laser wavelength. The flames were premixed, laminar, shielded flames at 1 atm, with temperatures ranging from 1860 to 2270 K; N2 and Ar served as diluent gases. The line core and near-wing profiles (i.e. the region covering 0.3<Δλ<7 Å for the outer wings and 0.3<Δλ<3 Å for the inner ones) in all of the flames studied appeared to have the same frequency dependence, regardless of the nature and concentrations of the gases used. The blue D2-line profile followed an unexpected (-2.2) law, while the other three profiles obeyed the theoretically expected (-2) law (the dispersion profile function). The line profile in the Δλ range between the impact and quasistatic regions was found to depend on the main perturbers involved. We found that the far blue D2- and red D1-wings in the Ar-diluted H2/O2 flame obeyed the (-54) and (-32) laws, respectively, as predicted by the quasi-static theory for the Lennard-Jones interaction. For the N2-diluted C2H2/O2 and H2/O2 flames, we did not find these wing dependences in the Δλ range investigated.  相似文献   

15.
The photoluminescence (PL) emission yield of Si nanocrystals embedded in SiO2 depends on their size and on Si–SiO2 interface passivation. In this work we aim at clarifying the relative importance of both contributions by studying lifetimes and absorption cross-sections as a function of size, for samples with and without passivation in forming gas. We find that while the PL lifetime increases steadily (quasi-linear dependence), the radiative lifetime increases exponentially with the nanocrystal size. Thus, as expected, radiative oscillator strengths are much smaller for large nanocrystals, but this reduction is partially compensated by a less effective quenching at interfacial non-radiative states. The absorption cross-section per nanocrystal rises as the nanocrystal size decreases, for all excitation wavelengths, implying that the variation of oscillator strength dominates over the reduction of the density of states. Passivation processes do not affect the emission mechanism and increase the emission yield while reducing the density of non-radiative recombination centers at the Si–SiO2 interface (Pb centers).  相似文献   

16.
Yttrium vanadate phosphors co-doped with Bi3+- and Sm3+ ions have been prepared via the solid-state reaction as well as via the sol-gel method. The luminescence studies demonstrate the potential of the prepared phosphors as multi-color emitters, which can be achieved by adjusting the excitation wavelengths. The excitation spectra of Bi3+- and Sm3+ co-doped phosphors clearly revealed energy transfer from Bi3+ to Sm3+ ions. When the co-doped phosphors were excited at 254 nm, the emission from Bi3+ was dominant. Upon excitation at 365 nm, the emission from both Bi3+ and Sm3+ was detected. With 410 nm excitation, Sm3+ ions were selectively excited to yield intense red emission. It is shown that the prepared phosphors with optimal concentrations of Bi3+ and Sm3+ can be excited at 254, 365 and 410 nm to yield yellow, orange and red emissions, respectively.  相似文献   

17.
Electron energy loss spectra of CO, N2 and O2 have been recorded in the regions of carbon, nitrogen and oxygen K-shell excitation and ionisation. These results are compared to previous energy loss, photoabsorption and theoretical studies of the same spectral regions. Several inconsistencies in the published spectra are clarified in the present work. Comparisons with recent calculations of the K-shell continua of these molecules are presented. Vibrational structure in the K → π * transitions of CO (C 1s) and N2 (N 1s) has been resolved in high-resolution studies (< 0.1 eV FWHM) of these species.  相似文献   

18.
(C9H19NH3)2PbI2Br2 compound is a new crystal belonging to the large hybrid organic-inorganic perovskites compounds family. Optical properties are investigated by optical absorption UV-visible and photoluminescence (PL) techniques. Bands to band absorption peak at 2.44 eV as well as an extremely strong yellow-green photoluminescence emission at 2.17 eV is observed at room temperature. First principle calculations based on the DFT and FLAPW methods combined with LDA approximation are performed as well. Density of state close to the gap is presented and discussed in terms of optical absorption and photoluminescence experimental results. The perfect agreement between experimental data and electronic structure calculations is highlighted.  相似文献   

19.
Bright quantum confined luminescence due to band-to-band recombination can be obtained from Si/SiO2 superlattices. Placing them in a one-dimensional optical microcavity results in a pronounced modulation of the photoluminescence (PL) intensity with emission wavelength, as a consequence of the standing wave set up between the substrate and top interfaces. For a Si substrate, absorption of light reduces the PL efficiency, but for an Al-coated glass substrate the PL intensity is twice that of a quartz substrate case. The addition of a broad-band high reflector to the superlattice surface results in enhanced narrow-band emission. These results show that a suitably designed planar microcavity can not only considerably increase the external efficiency of luminescence in Si/SiO2 superlattices but can also be used to decrease the bandwidth and selectively tune the peak wavelength.  相似文献   

20.
The optical properties—reflectivity, real part of the refractive index, absorption coefficient as well as the thermal and electrical conductivity of AlSi-alloy/SiCp composite were measured. The optical parameters and both conductivities decreased with the increase of SiCp particles volume in AlSi-alloy matrix. This decrease was almost linear for the volume fraction of SiCp particle up to 10 vol% of the total mass of the composite. For the 15 vol% of SiCp particles, the departure from linearity is connected with the presence of additional phases in AlSi-alloy/SiCp composite materials. The measured temperature dependencies of optical reflectivity and electrical conductivity for AlSi-alloy/SiCp 15 vol% are of metallic character. Modelling of the interaction of the CO2 laser radiation with AlSi-alloy/SiCp 15 vol% composite should allow to estimate the initiation time at which the surface composite reaches melting temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号