首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study was conducted to analyze the ablation rate and micromorphological aspects of microcavities in enamel and dentin of primary and permanent teeth using a Er: YAG laser system. Micromorphological evaluation has been performed in terms of permanent teeth; however, little information about Er: YAG laser interaction with primary teeth can be found in the literature. Because children have been the most beneficiary patients with laser therapy in our offices, it is extremely necessary to compare the effects of this kind of laser system on the enamel and dentin of permanent and primary teeth. In this study, we used eleven intact primary anterior exfoliated teeth and six extracted permanent molar teeth. We used a commercial laser system: a Er: YAG Twin Light laser system (Fotona Medical Lasers, Slovenia) at 2940 nm, changing average energy levels per pulse (100, 200, 300, and 400 mJ) producing 48 microcavities in enamel and dentin of primary and permanent teeth. Primary teeth are more easily ablated than are permanent teeth, when related to enamel or dentin. However, while this laser system is capable of slowly revealing the enamel’s microstructure, in dentin only the lowest laser energies permit this kind of observation, more easily decomposing the original tissue aspect, when related to primary or permanent teeth. Statistically, the only different factor at the 5% level was an energy per pulse of 400 mJ, confirming the results found in SEM. Our results showed that dentin in both primary and permanent teeth is less resistant to Er: YAG laser ablation; this fact is easily observed under SEM observation and through the ablation rate evaluation.  相似文献   

2.
The purpose of this study was to investigate the effect of Er:YAG laser on surface treatment to the bond strength of repaired composite resin after aged. Sixty specimens (n = 10) were made with composite resin (Z250, 3M) and thermocycled with 500 cycles, oscillating between 5 to 55°C. The specimens were randomly separated in six groups which suffered the following superficial treatments: no treatment (GI, control), wearing with diamond bur (GII), sandblasted with aluminum oxide with 27.5 μm particles (GIII) for 10 s, 200 mJ Er:YAG laser (GIV), 300 mJ Er:YAG laser (GV), and 400 mJ Er:YAG laser (GVI), with the last 3 groups under a 10 Hz frequency for 10 s. Restoration repair was done using the same composite. The shear test was done into the Universal testing machine MTS-810. Analyzing the results through ANOVA and Tukey test, no significant differences were found (p-value is 0.5120). Average values analysis showed that superficial treatment with aluminum oxide presented the highest resistance to shear repair interface (8.91MPa) while 400 mJ Er:YAG laser presented the lowest (6.76 MPa). Fracture types analysis revealed that 90% suffered cohesive fractures to GIII. The Er:YAG laser used as superficial treatment of the aged composite resin before the repair showed similar results when used diamond bur and sandblasting with aluminum oxide particles.  相似文献   

3.
The solid-state, tunable, narrowband, high pulse energy and high reliability lasers are attractive source for LIDAR system. In this paper, we demonstrated a diode pumped injection-seeded 2 μm Tm:YAG laser. By inserting two F-P etalons into the laser cavity, linear-polarized single-frequency seed-laser was achieved at a wavelength of 2013 nm, with a maximum output power of 60 mW. Long-term and short-term frequency stability for the seed-laser were 1.27 × 10− 7 and 97 Hz/μs, respectively. High power Q-switched laser was operated using a bowtie cavity, the bidirectional output of which was favorable for the injection-seeded. After injecting the seed-laser to the power-laser, single-frequency, nearly transform-limited pulsed 2 μm laser was obtained. As much as 2.0 mJ output energy was achieved at an operating repetition rate of 15 Hz, with a pulse width of 356.2 ns.  相似文献   

4.
A diode-pumped Master Oscillator Power Amplifier (MOPA) laser system based on cryogenic cooled Yb:YAG has been designed, developed and its output performance characterised. The laser system consists of a fibre oscillator, an active mirror regenerative amplifier and a four pass main amplifier. 2.4 mJ, 10 ns, 100 Hz seed pulses from the fibre oscillator/regenerative amplifier arrangement were amplified up to pulse energies of over 200 mJ by using the four pass main amplifier arrangement. As a further study we have obtained an increased slope efficiency of 40% and an optical-to-optical efficiency of 30% using a pinhole vacuum spatial filter/image relay for laser mode control. With 1.8 mJ input seed pulses, output pulse energies of around 150 mJ were achieved.  相似文献   

5.
Pulse repetition rates and the number of laser pulses are among the most important parameters that do affect the analysis of solid materials by laser induced breakdown spectroscopy, and the knowledge of their effects is of fundamental importance for suggesting analytical strategies when dealing with laser ablation processes of polymers. In this contribution, the influence of these parameters in the ablated mass and in the features of craters was evaluated in polypropylene and high density polyethylene plates containing pigment-based PbCrO4. Surface characterization and craters profile were carried out by perfilometry and scanning electron microscopy. Area, volume and profile of craters were obtained using Taylor Map software. A laser induced breakdown spectroscopy system consisted of a Q-Switched Nd:YAG laser (1064 nm, 5 ns) and an Echelle spectrometer equipped with ICCD detector were used. The evaluated operating conditions consisted of 10, 25 and 50 laser pulses at 1, 5 and 10 Hz, 250 mJ/pulse (85 J cm−2), 2 μs delay time and 6 μs integration time gate. Differences in the topographical features among craters of both polymers were observed. The decrease in the repetition rate resulted in irregular craters and formation of edges, especially in polypropylene sample. The differences in the topographical features and ablated masses were attributed to the influence of the degree of crystallinity, crystalline melting temperature and glass transition temperature in the ablation process of the high density polyethylene and polypropylene. It was also observed that the intensities of chromium and lead emission signals obtained at 10 Hz were two times higher than at 5 Hz by keeping the number of laser pulses constant.  相似文献   

6.
It is widely recognized that Nd:YAG can increase enamel resistance to demineralization; however, the safe parameters and conditions that enable the application of Nd:YAG laser irradiation in vivo are still unknown. The aim of this study was to determine a dye as a photoabsorber for Nd:YAG laser and to verify in vitro a safe condition of Nd:YAG irradiation for caries prevention. Fifty-eight human teeth were selected. In a first morphological study, four dyes (waterproof India ink., iron oxide, caries indicator and coal paste) were tested before Nd:YAG laser irradiation, under two different irradiation conditions: 60 mJ/pulse and 10 Hz (84.9 J/cm2); 80 mJ/pulse and 10 Hz (113.1 J/cm2). In a second study, the enamel surface and pulp chamber temperatures were evaluated during laser irradiations. All dyes produced enamel surface melting, with the exception of the caries indicator, and coal paste was the only dye that could be completely removed. All irradiation conditions produced temperature increases of up to 615.08°C on the enamel surface. Nd:YAG laser irradiation at 60 mJ/pulse, 10 Hz and 84.9 J/cm2 promoted no harmful temperature increase in the pulp chamber (ANOVA, p < 0.05). Among all dyes tested, the coal paste was an efficient photoabsorber for Nd:YAG irradiation, considered feasible for clinical practice. Nd:YAG laser at 84.9 J/cm2 can be indicated as a safe parameter for use in caries prevention.  相似文献   

7.
The RTP electro-optical Q-switched ceramic laser at the wavelength of 678 nm with narrow pulse width is studied. We used the laser diode arrays side-pumped Nd:YAG ceramic crystal with 1.1 at% Nd doping and dimensions of Φ3 mm × 50 mm, designed folding cavity parameters, and discussed the variation of the beam radius in the ceramic crystal and frequency doubling crystal with the thermal focal length of ceramic crystal or KTP crystal. By using double RTP crystals as electro-optic Q-switch and KTP crystal type II phase matching for intracavity frequency-doubling, a narrow pulse width electro-optical Q-switched Nd:YAG ceramic laser was obtained. The output energy of 0.9 mJ and the pulse width of 41.6 ns at 678 nm are obtained at the repetition rate of 1000 Hz and pumped power of 144 W. The results formed the basis for the further development of the high power and high efficiency ceramic red laser.  相似文献   

8.
Youssef  M.  Quinelato  A.  Youssef  F.  Pelino  J. E. Pelizon  Salvadori  M. C.  Mori  M. 《Laser Physics》2008,18(4):472-477
We compare an ultrasound bur with a conventional one and an Er:YAG laser for cavity preparations. Human molars were embedded in resin and sliced for this study. The surface abrasion was performed by a high-speed instrument and ultrasound. The cavity preparation was initially performed with a high-speed diamond bur. After this, a 2.94-μm laser with 400 mJ/pulse at 4 Hz, and a pulse width from 250–500 μs was applied to the tooth surface for 30 s in a sweeping motion. The samples were analyzed by SEM. The abrasion surface with a conventional bur showed structure removal with different grooves, a smear-layer presence, and occluded dentinal tubules. The abraded surface with the CVD bur suggested a removal process in layers. The laser-irradiated surface showed a rough aspect with opened tubules and the absence of a smear layer. The results of this study suggest that a high-speed diamond bur, ultrasound, and laser were able to perform cavity preparation. However, the CVD bur presented a higher surface quality.  相似文献   

9.
Two different kinds of chalcogenide glass IR fibers were evaluated relative to transmission of pulsed IR radiation produced by several laser sources in the wavelength range from 1 to 10 μm. Fibers composed either from As-Se-Te or from As2S3 glass, of 250, 500, 750 and 1000 μm and 250, 750 and 1000 μm core diameters were studied, respectively. Attenuation measurements were obtained as a function of the laser energy input and as a function of curvature, wherever this was possible. The output beam quality was also studied using a beam profiler. The lasers used were a Q-switched Nd:YAG laser, emitting at 1.06 μm, a free-running or Q-switched Er:YAG laser emitting at 2.94 μm and a tunable pulsed CO2 laser emitting in the range of 9.3-10.6 μm. The fibers exhibited better behavior when tested with the Er:YAG laser and they were found fragile in pulsed radiation from the Nd:YAG and the CO2 laser. The output beam profiles generally showed a central multi-spiking energy distribution.  相似文献   

10.
The aim of the study reported here is the development of a new method which allows rapid and accurate in-vitro measurements of three-dimensional (3D) shape of laser ablated craters in hard dental tissues and the determination of crater volume, ablation rate and speed. The method is based on the optical triangulation principle. A laser sheet projector illuminates the surface of a tooth, mounted on a linear translation stage. As the tooth is moved by the translation stage a fast digital video camera captures series of images of the illuminated surface. The images are analyzed to determine a 3D model of the surface. Custom software is employed to analyze the 3D model and to determine the volume of the ablated craters. Key characteristics of the method are discussed as well as some practical aspects pertinent to its use. The method has been employed in an in-vitro study to examine the ablation rates and speeds of the two main laser types currently employed in dentistry, Er:YAG and Er,Cr:YSGG. Ten samples of extracted human molar teeth were irradiated with laser pulse energies from 80 mJ to the maximum available energy (970 mJ with the Er:YAG, and 260 mJ with the Er,Cr:YSGG). About 2000 images of each ablated tooth surface have been acquired along a translation range of 10 mm, taking about 10 s and providing close to 1 million surface measurement points. Volumes of 170 ablated craters (half of them in dentine and the other half in enamel) were determined from this data and used to examine the ablated volume per pulse energy and ablation speed. The results show that, under the same conditions, the ablated volume per pulse energy achieved by the Er:YAG laser exceeds that of the Er,Cr:YSGG laser in almost all regimes for dentine and enamel. The maximum Er:YAG laser ablation speeds (1.2 mm3/s in dentine and 0.7 mm3/s in enamel) exceed those obtained by the Er,Cr:YSGG laser (0.39 mm3/s in dentine and 0.12 mm3/s in enamel). Since the presented method proves to be easy to use and allows quite rapid measurements it may become a valuable tool to study the influence of various laser parameters on the outcome of laser ablation of dental tissues.  相似文献   

11.
A high efficiency, high beam quality diode-pumped Nd:YAG master oscillator power-amplifier (MOPA) laser with six amplifier stages is demonstrated. The oscillator with two-rod birefringence compensation was designed as a thermally determined near hemispherical resonator, which presents a pulse energy of 223 mJ with a beam quality value of M2 = 1.29 at a repetition rate of 108 Hz. The MOPA system delivers a pulse energy of 5.1 J with a pulse width of 230 μs, a M2 factor of 3.6 and an optical-to-optical efficiency of 38.5%. To the best of our knowledge, this is the highest pulse energy for a diode-pumped Nd:YAG rod laser operation with a high beam quality and a pulse width of hundreds of microseconds at a repetition rate of over 100 Hz.  相似文献   

12.
Past trials with soft and calcified tissues have demonstrated that long pulse train (2.5 mus) Er:YAG (2.94 mum) laser may be used to ablate tooth structure of human teeth. Determination of physical and thermal damage to surrounding tissue during removal of enamel and dentin is a primary objective of this study. Extracted human teeth with thermal probes imbedded in the pulp chambers were submitted to cavity preparation using an Erbium YAG laser with water mist. Wavelength selection as well as use of a water mist during the procedure resulted in efficient tissue removal without significant surrounding damage. Ground sections and SEM sections of teeth showed little or no melting or ash formation in adjacent dentin and enamel and no visible change in the pulp chamber. The surfaces produced by laser ablation were rough and irregular with craters and grooves. Average temperature change in the pulp chamber monitored during tooth preparation was 2.2 degrees Centigrade. These findings suggest that constantly available water aids vaporization and microexplosions, increasing the efficiency of tooth structure removal, and aids in cooling of the tooth structures. The long pulse Er:YAG (2.94 mum) laser may be an effective method for tooth reduction applications when used with a water mist.  相似文献   

13.
刘志红  孟庆杰 《光学学报》2008,28(s1):32-34
分析了Er3+离子的能级结构特性和Er:YAG四能级系统的激光速率方程。采用了双灯,双椭圆腔和窄脉冲放电等方式提高了抽运效率; 通过提高激光谐振腔的反射率,降低阈值,从而实现了输出2.94 μm的高重频窄脉冲激光; 采用高压高速层流冷却技术降低了热效应的影响。Er3+:YAG激光器的重复频率为40 Hz,单脉冲输出能量为0.5 J,满足实际应用需要。  相似文献   

14.
We demonstrate and optimize, for a mJ/ns release at the wavelength 1.064 μm, the operation of a compact laser system designed in the form of a hybrid, active-passive, Q-switched Nd3+:YAG/Cr4+:YAG microchip laser seeding an Yb-doped specialty multi-port fiber amplifier. As the result of the amplifier optimization, ∼1 mJ, ∼1 ns, almost single-mode pulses at a 1-10-kHz repetition rate are achieved, given by a gain factor of ∼19 dB for an 11-μJ input from the microchip laser. Meanwhile, a lower pulse energy, ∼120 μJ, but a much higher gain (∼25 dB) are eligible for the less powerful (0.35 μJ) input pulses.  相似文献   

15.
The purpose of this study was to analyse, by scanning electron microscopy (SEM), the morphology of enamel and dentin/adhesive interfaces in cavities prepared by air-abrasion at different working distances. Thirty sound third human molars were selected and, on both their buccal and lingual surfaces, class V cavities were prepared by air-abrasion, at 2-, 4-, 6-, 8- and 10-mm working distances, or high-speed bur (control group). After preparation, all cavities were etched with 35% phosphoric acid gel and restored with Single Bond/Filtek Z-250. Buccal and lingual surfaces were separated and restorations sectioned in a buccolingual direction, providing two sections of each cavity, which were analysed by scanning electron microscopy. It was observed that the distances of 6 and 8 mm promoted more homogeneous dentin/adhesive interfaces, with tags formation, and more uniform for enamel, which were similar to the control group. It may be concluded that the air-abrasion working distance can influence the morphology of enamel and dentin/adhesive interfaces, and the intermediate distances provided better adhesive interfaces.  相似文献   

16.
Spectral and temporal measurements undertaken on a single picosecond laser pulse from a flash lamp pumped, cavity dumped, active/passive mode-locked Nd:YAG laser are presented in this paper. Optimization of several parameters of the resonator cavity produced a single pulse with 0.7 mJ energy and 102 contrast. The pulse duration was variable from 24 to 120 ps by using intra-cavity etalons of different thicknesses. The pulse width and spectrum of the pulse were simultaneously measured using a second harmonic autocorrelator and a spectrometer. The time bandwidth product was 0.445, which is close to theoretical limit for a bandwidth limited pulse.  相似文献   

17.
An eye-safe, high peak power optical parameter oscillator (OPO) intracavity pumped by electro-optic Q-switched Nd:YAG laser is presented. This OPO is based on a 20 mm length KTiOAsO4 crystal with non-critical phase matching (θ = 90°, ?=0°) cut. An aperture ∅3 mm acted as limiting diaphragm to get good beam quality of pumping laser. The output energy of 25 mJ at the signal wavelength 1.53 μm was obtained with repetition rate of 1 Hz. The highest peak power intensity was up to 88 MW/cm2 with pulse width of 4 ns. Without diaphragm, the maximum output energy of 90 mJ was achieved with area of light spot (∅6 mm) four times larger, but the peak power intensity was lower.  相似文献   

18.
A three-wavelength pulsed laser for dental application is developed. The laser houses the Nd:YAG resonator (1.06/1.32 μm) for soft-tissue treatment and Er:YAG resonator (2.94 μm) for caries removal and fits and fissure treatment. Two heads share the cooling unit and two identical high-voltage power supply modules in order to achieve compactness. The Nd:YAG laser has 10 W at 1.06 μm and 7 W at 1.32 μm with a pulse duration of 100 μs. An Er:YAG laser of 2.94 μm has 3.5 W, 20 Hz and a pulse duration of 250 μs. The beams are delivered through fibers and the laser size is 75×55×32.5 cm.  相似文献   

19.
LD side-pumped dual interconnected V-type quasi-continuous wave green laser has been demonstrated. The two Nd:YAG modules were placed in a plane-concave V-type resonator and a plane-concave straight cavity formed two stable operation beam of the 1064-nm fundamental frequency laser. Through acousto-optic Q-switched and frequency doubling crystal, two double-frequency laser beams arrived at the folded flat mirror, which were unidirectional output by the folded flat mirror at the end. As the pumped current was 50 A, the 532 nm green laser maximum average output power of 206 W at a repetition of 22.4 kHz was achieved with a pulse width of 201 ns and the largest single pulse energy of 9.2 mJ, corresponding to a peak power of 45.8 kW and a double frequency efficiency of 60.2%.  相似文献   

20.
A large aperture tapered fused silica fiber phase conjugate mirror with a maximum 50.7% stimulated Brillouin scattering (SBS) reflectivity is presented, which is operated with 400 Hz pulse repetition rate and 36.5 mJ input pulse energy. To the best of our knowledge, it is the first time that over 50% SBS reflectivity is achieved by using solid-state phase conjugate mirror under such high pulse repetition rate and high pulse energy. With much higher pulse repetition rate of 500 and 1000 Hz, the maximum SBS reflectivity is 41.2% and 33.3%, respectively. A single-longitudinal-mode Nd:YAG laser is experimentally studied with master oscillator power amplifier (MOPA) scheme using such a tapered fiber as a phase conjugate mirror. A 101 mJ pulse energy is achieved at 400 Hz repetition rate, with a pulse width of 6 ns and a M2 factor of less than 2. The corresponding peak power reaches 16.8 MW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号