首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper the surface topography of titanium samples irradiated by femtosecond laser pulses is described. When the fluence is about 0.5 J/cm2 periodic ripples with a period of about 700 nm are formed. For fluences between 0.5 and 2 J/cm2, a microcolumnar surface texture develops in the center of the irradiated spots and ripples are formed in the periphery of the spots. When experiments are performed with a non-stationary sample, the microcolumns exhibit ripples similar to those observed when the radiation fluence is about 0.5 J/cm2 and in the outer regions of the irradiated areas for fluences between 0.5 and 2 J/cm2. Since the energy distribution in the transverse cross-section of the laser beam is Gaussian, we conclude that the ripples form when the microcolumns are subjected to fluences near the melting threshold of the material at the trailing edge of the moving laser beam.  相似文献   

2.
We report on a femtosecond-laser induced photoluminescence (PL) in poly(methyl methacrylate) and its potential application to three-dimensional optical storage. Irradiation with a focused 800 nm, 1 kHz, 100 fs pulsed laser induced a strong PL change in UV-visible region. Absorption spectra and Fourier-transform infrared spectra before and after laser irradiation indicate the PL may result from the emissive oxidized products of photo-degradation reaction of PMMA. This makes it possible to read out the stored data by detecting the PL change. The pulse energy threshold of the light-induced PL change of PMMA is found to be at ∼2 μJ/pulse and the optimal recording energy is ∼3 μJ/pulse. A ten-layer pattern inside the bulk sample recorded by tightly focusing a pulsed laser beam was read out by a reflection-type fluorescent confocal microscope, which detected the emission in visible range as the signal. High-contract fluorescent images with a much higher signal-to-noise ratio were obtained without crosstalk in comparison with the ordinary reflection mode.  相似文献   

3.
Titanium oxynitride layers were formed by surface laser treatment of Ti plates in air using a Nd:YAG laser source of short pulse duration about 5 ns. The cumulated laser fluence was varied in the 100-1200 J cm−2 range and its influence on the composition and the structure of the formed layers was studied by different characterization techniques providing physico-chemical and structural information. It was shown that the laser treatment induces the insertion of light elements as O, N and C in the formed layer with the amount increasing with the laser fluence. The in-depth composition of the layers and the co-existence of different phases were also studied.The way in which the laser parameters such as fluence affect the insertion of nitrogen and oxygen was discussed in connection with the effects of the plasma plume formed above the target.  相似文献   

4.
This paper reports results of the investigation into the feasibility of using a CO2 laser technology to perform critical cleaning of gas-turbine aero-engine components for manufacture. It reports the results of recent trials and relates these to a thermal model of the cleaning mechanisms, and describes resultant component integrity. The paper defines the experimental conditions for the laser cleaning of various aerospace-grade contaminated titanium alloys, using a continuous wave CO2 laser. Laser cleaning of Ti64 proved successful for electron beam welding, but not for the more sensitive Ti6246. For diffusion bonding the trials produced a defective standard of joint. Effects of oxide formation is modelled and examined experimentally.  相似文献   

5.
The dependence of surface structure of the poly(vinylidene fluoride) (PVDF)/poly(methylmethacrylate) (PMMA) films by solution casting on properties of seven substrates was investigated by wide angle X-ray diffraction (WAXD), Fourier transform infrared (FTIR), scanning electron microscope (SEM) and differential scanning calorimetry (DSC). It was revealed that the polyblend films obtained by casting onto each substrate contained exclusively β phase PVDF. Higher crystallinity of the film was obtained by casting onto ceramic, polytetrafluoroethylene (PTFE), copper (Cu), stainless steel and glass substrates than that by casting onto aluminium (Al) and polypropylene (PP) substrates, depending on the degree of close lattice matching. The surface crystalline structure of PVDF was strongly affected by the wettability of substrate. The largest size of PVDF spherulitic crystal structure with about 6 μm presented in the casting film grown at the air/solution interface on glass substrate, while the smallest spherulite size with about 3 μm was generated by casting onto PTFE, stainless steel and PP substrates. It implied that the higher surface tension the substrate had, the larger PVDF spherulite grew at the air/solution interface.  相似文献   

6.
The paper compares laser cleaning trials performed using a Q-switched Nd:YAG laser, λ = 1.064 μm and a continuous wave (CW) CO2 laser, λ = 10.6 μm, applied to aerospace-grade, contaminated titanium alloys. The mechanisms for cleaning using each laser system are modelled to determine the mode and extent of contaminant removal. The model results are then compared with the surface chemistry and micro-structural results from the cleaning trials performed. The results show the dominant cleaning process for Nd:YAG cleaning to be by evaporation of the contaminant via conduction through surface heating, while for CO2 laser cleaning the small fraction of the beam coupling directly with the contaminant is sufficient for direct heating and selective evaporation. The results for experimental cleaning, electron beam (EB) welding and diffusion bonding align well with the model, particularly when secondary reactions are taken into account.  相似文献   

7.
Increase of photoluminescence (PL) from fullerenes (C60 and C70)-doped poly(alkyl methacrylate), such as poly(ethyl methacrylate) (PEMA), poly(isopropyl methacrylate) (PiPMA) and poly(isobutyl methacrylate) (PiBMA), have been studied under laser irradiation with wavelength of in air. After laser irradiation, PL peaks of all fullerenes doped-polymers are broadened and blue-shifted. This PL increase depends on the fullerene concentrations. By comparing with fullerenes-doped PMMA, fullerenes-doped PEMA have the greatest PL increase among the four kinds of polymers, including PEMA, PiPMA, PiBMA and PMMA. PL intensity of C70-doped polymers increases much more quickly than the corresponded C60-doped polymers at the initial stage of laser irradiation. Great change on their UV-visible absorption spectra before and after laser irradiation indicate some great variation on chemical structure of fullerene molecules dispersed in polymer matrix under laser irradiation. This great PL increase may be attributed to formation of fullerene oxide-polymer and oxidized fullerene-polymer adducts due to laser-induced photochemical reactions among fullerene, oxygen and polymer.  相似文献   

8.
We investigate the TEA CO2 laser ablation of films of poly(methyl methacrylate), PMMA, with average MW 2.5, 120 and 996 kDa doped with photosensitive compounds iodo-naphthalene (NapI) and iodo-phenanthrene (PhenI) by examining the induced morphological and physicochemical modifications. The films casted on CaF2 substrates were irradiated with a pulsed CO2 laser (10P(20) line at 10.59 μm) in resonance with vibrational modes of PMMA and of the dopants at fluences up to 6 J/cm2. Laser induced fluorescence probing of photoproducts in a pump and probe configuration is carried out at 266 nm. Formation of naphthalene (NapH) and phenanthrene (PhenH) is observed in NapI and PhenI doped PMMA, respectively, with relatively higher yields in high MW polymer, in similarity with results obtained previously upon irradiation in the UV at 248 nm. Above threshold, formation of photoproducts is nearly complete after 200 ms. As established via optical microscopy, bubbles are formed in the irradiated areas with sizes that depend on polymer MW and filaments are observed to be ejected out of the irradiated volume in the samples made with high MW polymer. The implications of these results for the mechanisms of polymer IR laser ablation are discussed and compared with UV range studies.  相似文献   

9.
Pulsed UV laser beams, which are widely used in the processing of polymers, have many advantages because their photon energy is higher than the binding energy of polymers. Fabricating polymers with a UV laser process is faster, cleaner, and more convenient than with other processes. Nevertheless, some problems occur in the precision microprocessing of polymers. For example, the formation and deposition of surface debris, which is produced from the breakdown of either polymer chains or radical bonds.To determine the formation and origin of surface debris, a KrF excimer laser beam (248 nm) was used in the processing of poly(ethylene terephthalate) (PET). The investigation of the debris formation was facilitated by UV-vis spectroscopy, ATR FT-IR spectroscopy, and NMR spectroscopy. The UV-vis absorption peak indicates that the primary chromophore in the PET is benzoate. Furthermore, because benzoate causes the primary absorption, the absorbed energy is transferred by heat generation to an unsaturated ester. The ATR FT-IR spectrometer measurements show that the phenyl systems in the benzoate are demolished by ablation. This phenomenon indicates that the photochemical reaction causes the benzoate bonds to break down, and this breakdown in turn causes the carbonization to leave debris on the PET.  相似文献   

10.
Poly(dimethylsiloxane) (PDMS) has been used extensively for microfluidic components and as substrates for biological applications. Since the native nature of PDMS is hydrophobic it requires a functionalization step for use in conjunction with aqueous media. Commonly, oxygen plasma treatment is used for the formation of hydrophilic groups on the surface. However, the hydrophilic nature of these surfaces is short lived and the surfaces quickly revert back to their original hydrophobic state. In this work, branched-polyethylenimine (b-PEI) was used for long term modification of plasma treated PDMS surface. Contact angle, X-ray photoelectron spectroscopy (XPS) and Atomic force microscopy (AFM) were used for characterization of the modified surfaces and their stability with time was studied. The results obtained demonstrate that comparatively higher stability, hydrophilic, positively charged surfaces can be obtained after b-PEI treatment. These b-PEI treated PDMS surfaces can be used as fluidic channels for the separation of molecules as well as a substrate for the adherence of bio-molecules or biological cells.  相似文献   

11.
We present the manufacturing of microlens arrays on soda-lime glass substrates by using two different IR pulsed lasers: a nanosecond Nd:YVO4 laser (1064 nm) and a femtosecond laser based on Ytterbium crystal technology (1030 nm). In both cases, the fabrication technique consists of the combination of a direct-write laser process, followed by a post-thermal treatment assisted by a CO2 laser. Through the analysis of the morphological characteristics of the generated microlenses, the different physical mechanisms involved in the glass ablation process with a nanosecond and a femtosecond laser are studied. In addition, by analyzing the optical features of the microlenses, a better result in terms of the homogeneity and quality of the spot focuses are observed for those microlenses fabricated with the Nd:YVO4 nanosecond laser. Microlens arrays with a diameter of 80 and 90 µm were fabricated.  相似文献   

12.
This paper is to investigate the mechanisms of micro-scale particle removal by surface wave, which was induced by a short pulse laser in a cleaning process. The authors analyzed the adhesive forces of particles on substrate surface and the clearance force produced by surface wave in laser cleaning. The physical model of particle removal by laser-induced surface wave was established to predict the removal area and the processing conditions of laser cleaning. In this research, a KrF excimer laser was applied to irradiate 304 stainless steel specimen distributed with copper particles to generate surface wave for copper particle removal. Considering that a time-varying and uniformly distributed heat source irradiates on material surface with thermao-elastic behavior, the displacement and acceleration of substrate induced by a pulsed laser were solved by an uncoupled thermal–mechanical analysis based on the finite element method. The processing parameters such as laser energy, laser spot size are discussed, respectively. A series of laser cleaning experiments were designed to compare with computation results. The results show that the removal area by surface wave beyond the laser spot increases with the laser energy and that, the surface acceleration decreases with the increase of the laser spot size.  相似文献   

13.
The weight reduction of mechanical components is becoming increasingly important, especially in the transportation industry, as fuel efficiency continues to improve. Titanium and titanium alloys are recognized for their outstanding potential as lightweight materials with high specific strength. Yet they also have poor tribological properties that preclude their use for sliding parts. Improved tribological properties of titanium would expand the application of titanium into different fields.Laser alloying is an effective process for improving surface properties such as wear resistance. The process has numerous advantages over conventional surface modification techniques. Many researchers have reported the usefulness of laser alloying as a technique to improve the wear resistance of titanium. The process has an important flaw, however, as defects such as cracks or voids tend to appear in the laser-alloyed zone.Our group performed a novel laser-alloying process using a light-transmitting resin as a source for the carbon element. We laser alloyed a surface layer of pure titanium pre-coated with polymethyl methacrylate (PMMA) and investigated the microstructure and wear properties. A laser-alloyed zone was formed by a reaction between the molten titanium and thermal decomposition products of PMMA at the interface between the substrate and PMMA. The cracks could be eliminated from the laser-alloyed zone by optimizing the laser alloying conditions. The surface of the laser-alloyed zone was covered with a titanium carbide layer and exhibited a superior sliding property and wear resistance against WC-Co.  相似文献   

14.
X-ray photoelectron spectroscopy (XPS) was adopted for the analytical characterization of composite titanium dioxide–poly(vinylidenefluoride) (TiO2–PVDF) films developed for applications in the photocatalytic degradation of pollutants.

The composites were deposited on glass substrates by casting or spin coating from TiO2–PVDF suspensions in dimethylformamide (DMF). XPS data on the TiO2–PVDF surface composition were used to optimize preparation conditions (composition of the TiO2/PVDF suspension, deposition technique) in terms of titanium dioxide surface amount and film stability.

The use of spin-coating deposition and the increase of TiO2 amount in the DMF suspensions were found to improve the titanium surface content, although high TiO2/PVDF ratios led to film instability. PVDF–TiO2 films were also used in preliminary photocatalytic degradation tests on isoproturon, a phenylurea herbicide, under solar UV irradiation; the results were compared to direct photolysis to evaluate the catalytic efficiency of immobilized TiO2 and the role played by the PVDF film during the degradation process.  相似文献   


15.
Titanium samples were treated by the mixing technology with laser and plasma (LPN) using different laser power densities. These nitrided samples were then annealed at 473 K, 673 K, 873 K, and 1073 K for 2 h in vacuum, respectively. The samples before and after annealing were characterized at room temperature and compared in terms of microstructure. X-ray diffraction and cross-sectional optical microscopy studies showed that the layer structure of the titanium nitride coating is preserved after annealing at 1073 K when the coating is formed using a laser power density of 8.0 × 105 W/cm2. Therefore, titanium nitride coatings produced by LPN demonstrate excellent thermal stability and are potential candidates for high temperature tribological applications.  相似文献   

16.
Nanoparticles (NPs) were produced by ablating tungsten and boron-carbide (B4C) target materials in atmospheric pressure nitrogen ambient using ArF excimer laser pulses. The size distributions of the NPs formed during the ablation were monitored—within a 7-133 nm size window—by a condensation particle counter connected to a differential mobility analyzer. The laser repetition rate was varied between 1-50 Hz, and the fluence was systematically changed in the range of 0.5-15 J/cm2, for both materials, allowing a comparative study in an extended laser parameter regime. The multishot ablation threshold (Φth) of B4C was determined to be ∼1.9 J/cm2 for the laser used (ArF excimer, λ = 193 nm). Similarly to earlier studies, it was shown that the size distributions consist of mainly small nanoparticles (<∼20 nm) attributed to a non-thermal ablation mechanism below Φth. An additional broad peak appears (between 20 and 40 nm) above Φth as a consequence of the thermally induced macroscopic ablation. Chemical composition of deposited polydisperse nanoparticles was studied by X-ray photoelectron spectroscopy showing nitrogen incorporation into the boron-carbide.  相似文献   

17.
Structural, Theological, thermal, and mechanical properties of blends of poly(ethylene naphthalate) (PEN) and poly(ethylene terephthalate) (PET) obtained by melt blending were investigated using capillary rheometry, differential scanning calorimetry (DSC), scanning electron microscopic (SEM) observation, tensile testing. X-ray diffraction, and 1H nuclear magnetic resonance (NMR) measurements. The melt Theological behavior of the PEN/PET blends was very similar to that of the two parent polymers. The melt viscosity of the blends was between that of PEN and that of PET. Thermal properties and NMR measurement of the blends revealed that PEN is partially miscible with PET in the as molded blends, indicating that an interchange reaction occurs to some extent on melt processing. The blend of 50/50 PEN/PET was more difficult to crystallize compared with blends of other PEN/PET ratios. The blends, once melted during DSC measurements, almost never showed cold crystallization and subsequent melting and definitely exhibited a single glass transition temperature between those of PEN and PET during a reheating run. Improvement of the miscibility between PEN and PET with melting is mostly due to an increase in transesterification. The tensile modulus of the PEN/PET blend strands had a low value, reflecting amorphous structures of the blends, while tensile strength at the yield point increased linearly with increasing PEN content.  相似文献   

18.
Epitaxial TiCxOy thin films were grown on MgO (0 0 1) substrates by using pulsed laser deposition method. High-resolution X-ray diffraction and transmission electron microscopy were used to examine crystallinity and microstructure of epitaxial TiCxOy film on MgO. The chemical composition of the film is determined to be x ∼ 0.47 and y ∼ 0.69 by X-ray photoelectron spectroscopy. Atomic force microscopy revealed that the surface of TiCxOy film is very smooth with roughness of 0.18 nm. The resistivity of the TiCxOy film measured by four-point-probe method was about 137 μ Ω cm.  相似文献   

19.
Titanium oxynitride (TiNxOy) films were deposited on polyethylene terephthalate (PET) substrates by means of a reactive radio frequency (RF) magnetron sputtering system in which the power density and substrate bias were the varied parameters. Experimental results show that the deposited TiNxOy films exhibited an amorphous or a columnar structure with fine crystalline dependent on power density. The deposition rate increases significantly in conjunction as the power density increases from 2 W/cm2 to 7 W/cm2. The maximum deposition rate occurs, as the substrate bias is −40 V at a certain power densities chosen in this study. The film's roughness slightly decreases with increasing substrate bias. The TiNxOy films deposited at power densities above 4 W/cm2 show a steady Ti:N:O ratio of about 1:1:0.8. The water vapor and oxygen transmission rates of the TiNxOy films reach values as low as 0.98 g/m2-day-atm and 0.60 cm3/m2-day-atm which are about 6 and 47 times lower than those of the uncoated PET substrate, respectively. These transmission rates are comparable to those of DLC, carbon-based and Al2O3 barrier films. Therefore, TiNxOy films are potential candidates to be used as a gas permeation barrier for PET substrate.  相似文献   

20.
A simple optical interference method for the fabrication of simply periodic and periodic with a substructure on poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) using femtosecond laser interference patterns is demonstrated. The femtosecond laser pulse was split by a diffractive beam splitter and overlapped with two lenses. Homogeneous periodic arrays could be fabricated even using a single laser pulse. In addition, multipulse irradiation resulted in reproducible sub-wavelength ripples oriented perpendicularly to the laser polarization with spatial period from 170 to 220 nm (around one-fourth of the laser wavelength). In addition, the observed size of the spatial period was not affected by the number of incident laser pulses or accumulated energy density. Using high energy pulses it was possible to completely remove the PEDOT:PSS layer without inducing damage to the underneath substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号