首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To protect carbon/carbon (C/C) composites from oxidation, a new type of oxidation protective coating has been produced by a two-step pack cementation technique. XRD and SEM analysis show, the coating obtained by the first step pack cementation was a porous β-SiC structure, and a new phase of CrSi2 was generated in the porous SiC coating after heat-treatment according to the second step pack cementation process. Oxidation test shows that, the weight loss of the SiC coated C/C is up to 11.26% after 5 h oxidation in air at 1773 K, and the weight loss of the CrSi2-SiC coated C/C composites is only 4.15% after oxidation in air at 1773 K for 34 h. The oxidation of C/C composites was primarily due to the reaction of C/C matrix and oxygen diffusing through the penetrable cracks in the coating.  相似文献   

2.
The SiC/SiO2 deposition was performed to improve the oxidation resistive properties of carbon nanofiber (CNF) from electrospinning at elevated temperatures through sol-gel process. The stabilized polyacrylonitrile (PAN) fibers were coated with SiO2 followed by heat treatment up to 1000 and 1400 °C in an inert argon atmosphere. The chemical compositions of the CNFs surface heat-treated were characterized as C, Si and O existing as SiC and SiO2 compounds on the surface. The uniform and continuous coating improved the oxidation resistance of the carbon nanofibers. The residual weight of the composite was 70-80% and mixture of SiC, SiO2 and some residual carbon after exposure to air at 1000 °C.  相似文献   

3.
The uniform and dense Al2O3 and Al2O3/Al coatings were deposited on an orthorhombic Ti2AlNb alloy by filtered arc ion plating. The interfacial reactions of the Al2O3/Ti2AlNb and Al2O3/Al/Ti2AlNb specimens after vacuum annealing at 750 °C were studied. In the Al2O3/Ti2AlNb specimens, the Al2O3 coating decomposed significantly due to reaction between the Al2O3 coating and the O-Ti2AlNb substrate. In the Al2O3/Al/Ti2AlNb specimens, a γ-TiAl layer and an Nb-rich zone came into being by interdiffusion between the Al layer and the O-Ti2AlNb substrate. The γ-TiAl layer is chemically compatible with Al2O3, with no decomposition of Al2O3 being detected. No internal oxidation or oxygen and nitrogen dissolution zone was observed in the O-Ti2AlNb alloy. The Al2O3/Al/Ti2AlNb specimens exhibited excellent oxidation resistance at 750 °C.  相似文献   

4.
A SiC whisker-toughened SiC-CrSi2 oxidation protective coating was prepared on the surface of C/C composites by a two-step technique of slurry and pack cementation. The oxidation protective ability and thermal stress resistance of the coating exhibit the trend of increase first and decrease afterwards as the SiCw content increases from 0 to 20 wt.%. The compound effect of SiCw and CrSi2 on the oxidation protective ability of SiC coating is better than their individual ones.  相似文献   

5.
A novel ZrC-SiC coating was prepared on carbon/carbon (C/C) composites surface by solid phase infiltration and the ablation properties of the ZrC-SiC coated C/C composites under oxyacetylene flame were studied. The results show that the coating prepared on the condition of optimum process parameters exhibits dense surface and outstanding anti-ablation ability. After ablation for 20 s, the mass ablation rates of the coated C/C composites can be lowered to 2.36 × 10−3 g/s, 37.1% reduction compared with uncoated C/C composites. The oxide layer composed of ZrO2 and SiO2 acts as oxygen diffusion barrier and the evaporation of ZrO2 and SiO2 absorbs a great amount of heat from the flame and reduces the erosive attack on the coating.  相似文献   

6.
Double layer coatings, with celsian-Y2SiO5 as inner layer and Y2Si2O7 as outer layer, were prepared by microwave sintering on the surface of carbon fiber reinforced silicon carbide matrix composite. Both celsian, Y2SiO5 and Y2Si2O7 were synthesized by in situ method using BAS glass, Y2O3 and SiO2 as staring materials. The sintering temperature was 1500 °C, and little damage was induced to the composite. The composition and micrograph of the fired coating were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The oxidation and thermal shock resistance of samples with doubled-layered coating were characterized at 1400 °C in air. After 150 min oxidation and thermal cycling between 1400 °C and room temperature for 15 times, the weight loss of double layer-coated sample was 1.22% and there were no cracks in the coating.  相似文献   

7.
Electrodeposition was employed to fabricate magnetite (Fe3O4) coated carbon fibers (MCCFs). Temperature and fiber surface pretreatment had a significant influence on the composition and morphology of Fe3O4 films. Uniform and compact Fe3O4 films were fabricated at 75 °C on both nitric acid treated and untreated carbon fibers, while the films prepared at 60 °C were continuous and rough. Microwave measurements of MCCF/paraffin composites (50 wt.% of MCCFs, pretreated carbon fibers as deposition substrates) were carried out in the 2-18 GHz frequency range. MCCFs prepared at 60 °C obtained a much higher loss factor than that prepared at 75 °C. However, the calculation results of reflection loss were very abnormal that MCCFs prepared at 60 °C almost had no absorption property. While MCCFs prepared at 75 °C exhibited a good absorption property and obtained −10 dB and −20 dB refection loss in wide matching thickness ranges (1.0-6.0 mm and 1.7-6.0 mm range, respectively). A secondary attenuation peak could also be observed when the thickness of MCCF/paraffin composite exceeded 4.0 mm. The minimum reflection loss was lower.  相似文献   

8.
The diamond abrasive particles were coated with the TiO2/Al2O3 film by the sol-gel technique. Compared with the uncoated diamonds, the TiO2/Al2O3 film was excellent material for the protection of the diamonds. The results showed that the incipient oxidation temperature of the TiO2/Al2O3 film coated diamonds in air atmosphere was 775 °C, which was higher 175 °C than that of the uncoated diamonds. And the coated diamonds also had better the diamond's single particle compressive strength and the impact toughness than that of uncoated diamonds after sintering at 750 °C. For the vitrified bond grinding wheels, replacing the uncoated diamonds with the TiO2/Al2O3 film coated diamonds, the volume expansion of the grinding wheels decreased from 6.2% to 3.4%, the porosity decreased from 35.7% to 25.7%, the hardness increased from 61.2HRC to 66.5HRC and the grinding ratio of the vitrified bond grinding wheels to carbide alloy (YG8) increased from 11.5 to 19.1.  相似文献   

9.
We produced dielectric stacks composed of ALD SiO2 and ALD Al2O3, such as SiO2/Al2O3, Al2O3/SiO2, and SiO2/Al2O3/SiO2, and measured the leakage currents through the stacks in comparison with those of the single oxide layers. SiO2/Al2O3 shows lowest leakage current for negative bias region below 6.4 V, and Al2O3/SiO2 showed highest current under negative biases below 4.5 V. Two distinct electron conduction regimes are observed for Al2O3 and SiO2/Al2O3. Poole-Frenkel emission is dominant at the high-voltage regime for both dielectrics, whereas the direct tunneling through the dielectric is dominant at the low-voltage regime. The calculated transition voltage between two regimes for SiO2 (6.5 nm)/Al2O3 (12.6 nm) is −6.4 V, which agrees well with the experimental observation (−6.1 V). For the same EOT of entire dielectric stack, the transition voltage between two regimes decreases with thinner SiO2 layer.  相似文献   

10.
Sandwich-structure Al2O3/HfO2/Al2O3 gate dielectric films were grown on ultra-thin silicon-on-insulator (SOI) substrates by vacuum electron beam evaporation (EB-PVD) method. AFM and TEM observations showed that the films remained amorphous even after post-annealing treatment at 950 °C with smooth surface and clean silicon interface. EDX- and XPS-analysis results revealed no silicate or silicide at the silicon interface. The equivalent oxide thickness was 3 nm and the dielectric constant was around 7.2, as determined by electrical measurements. A fixed charge density of 3 × 1010 cm−2 and a leakage current of 5 × 10−7A/cm2 at 2 V gate bias were achieved for Au/gate stack /Si/SiO2/Si/Au MIS capacitors. Post-annealing treatment was found to effectively reduce trap density, but increase in annealing temperature did not made any significant difference in the electrical performance.  相似文献   

11.
The paper presents the results of oxidation tests of Fe3Al-based alloys containing additions of Cr, Zr, B, and C, with and without an aluminide coating. The coating was formed by a pack cementation process in which the surface of material got enriched in aluminum. The Al-rich layer was intended to enhance the tendency of Al2O3 formation. The slow-growing Al2O3 scale provides the best corrosion protection for structural materials at high temperatures. The cyclic oxidation tests were performed in laboratory air at 1373 K. The structure and composition of oxide scales as well as their adherence were evaluated and compared for the materials with and without aluminide coatings. Surface enrichment in aluminum and effect minor addition of Zr on oxidation behavior was discussed.  相似文献   

12.
Evolution of tribological properties of electroless Ni-P and Ni-P-Al2O3 coating on an Al-10Si-0.3Mg casting alloy during heat treatment is investigated in this work. The pre-treated substrate was plated using a bath containing nickel hypophosphite, nickel lactate and lactic acid. For preparation of fiber-reinforced coating Al2O3 Saffil fibers pre-treated in demineralised water were used. The coated samples were heat treated at 400-550 °C/1-8 h. Tribological properties were studied using the pin-on-disc method. It is found that the best coating performance is obtained using optimal heat treatment regime (400 °C/1 h). Annealing at higher temperatures (450 °C and above) leads to the formation of intermetallic compounds that reduce the coating wear resistance. The reason is that the intermetallic phases adversely affect the coating adherence to the substrate. The analysis of wear tracks proves that abrasion is major wear mechanism, however due to the formed intermetallic sub-layers, partial coating delamination may occur during the pin-on-disc test on the samples annealed at 450 °C and above. It was found that fiber reinforcement reduces this scaling and increases wear resistance of coatings as compared to the non-reinforced Ni-P coatings.  相似文献   

13.
Binary Al2O3/SiO2-coated rutile TiO2 composites were prepared by a liquid-phase deposition method starting from Na2SiO3·9H2O and NaAlO2. The chemical structure and morphology of binary Al2O3/SiO2 coating layers were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, TG-DSC, Zeta potential, powder X-ray diffraction, and transmission electron microscopy techniques. Binary Al2O3/SiO2 coating layers both in amorphous phase were formed at TiO2 surfaces. The silica coating layers were anchored at TiO2 surfaces via Si-O-Ti bonds and the alumina coating layers were probably anchored at the SiO2-coated TiO2 surfaces via Al-O-Si bonds. The formation of continuous and dense binary Al2O3/SiO2 coating layers depended on the pH value of reaction solution and the alumina loading. The binary Al2O3/SiO2-coated TiO2 composites had a high dispersibility in water. The whiteness and brightness of the binary Al2O3/SiO2-coated TiO2 composites were higher than those of the naked rutile TiO2 and the SiO2-coated TiO2 samples. The relative light scattering index was found to depend on the composition of coating layers.  相似文献   

14.
A relatively thick (i.e., ∼9 nm) SiO2 layer can be formed by oxidation of Si with nitric acid (HNO3) vapor below 500 °C. In spite of the low temperature formation, the leakage current density flowing through the SiO2 layer is considerably low, and it follows the Fowler-Nordheim mechanism. From the Fowler-Nordheim plots, the conduction band offset energy at the SiO2/Si interface is determined to be 2.57 and 2.21 eV for HNO3 vapor oxidation at 500 and 350 °C, respectively. From X-ray photoelectron spectroscopy measurements, the valence band offset energy is estimated to be 4.80 and 4.48 eV, respectively, for 500 and 350 °C oxidation. The band-gap energy of the SiO2 layer formed at 500 °C (8.39 eV) is 0.68 eV larger than that formed at 350 °C. The higher band-gap energy for 500 °C oxidation is mainly attributable to the higher atomic density of the SiO2 layer of 2.46 × 1022/cm3. Another reason may be the absence of SiO2 trap-states.  相似文献   

15.
This paper deals with the sol-gel elaboration and defects photoluminescence (PL) examination of Al2O3 nanocrystallites (size ∼30 nm) confined in glass based on silica aerogel. Aluminium oxide aerogels were synthesized using esterification reaction for hydrolysis of the precursor and supercritical conditions of ethyl alcohol for drying. The obtained nanopowder was incorporated in SiO2 host matrix. After heating under natural atmosphere at 1150 °C for 2 h, the composite Al2O3/SiO2 (AS) exhibited a strong PL bands at 400-600 and 700-900 nm in 78-300 K temperature range. PL excitation (PLE) measurements show different origins of the emission. It was suggested that OH-related radiative centres and non-bridging oxygen hole centres (NBOHCs) were responsible for the bands at 400-600 and 700-900 nm, respectively.  相似文献   

16.
SiO2 was firstly coated onto the surface of carbon microspheres (CMSs) using tetraethyl orthosilicate (TEOS) as precursor by Stöber method. Then SiO2-encapsulated CMS (CMS@SiO2) composites were self-assembled by vertical deposition, in which the effects of deposition temperature and suspension concentration on the quality of self-assembling film were investigated. Morphologies and structures of the samples were characterized by field emission scanning electron microscopy, Fourier transformation infrared spectrometry, X-ray diffraction and thermogravimetry. The results show that uniform CMS@SiO2 composites with good mono-dispersion were prepared by St?ber method with 0.5 g of CMSs, 2 mL of TEOS, 30 mL of ammonia and 12 h of reaction time, the CMSs-based films with ordered and denser structure were prepared by vertical deposition using CMS@SiO2 composites as monodipersion spheres under suspension concentration of 1 wt% and deposition temperature of 50 °C. The ultraviolet-visible absorption measurement shows that the absorbance of CMS@SiO2 composite films grew steadily with increasing suspension concentration.  相似文献   

17.
Cycle oxidation resistance at 800 °C in static air was investigated for a nanostructured Ni60-TiB2 composite coating sprayed by high velocity oxy-fuel (HVOF). For comparison, a Ni60-TiB2 conventional composite coating was also studied. The results indicate that, the oxidation processes of both composite coatings are controlled by diffusion mechanism, and the nanostructured composite coating has better cycle oxidation resistance than that of the conventional composite coating. The reasons for this improvement can be attributed to the formation of the intact SiO2 and Cr2O3 protective layer, and the enhanced adhesion between oxide film and nanostructure coating.  相似文献   

18.
This paper proposes a new blackening technology for growing magnetite (Fe3O4) coating on surface of carbon steel. Dense black coating composed of Fe3O4 ultrafine particles could be successfully prepared by hydrothermal treatment of the carbon steel substrate in the N2H4·H2O-FeSO4-NaOH solution at 150 °C. Electrochemical analysis, including Tafel and electrochemical impedance spectroscopy, indicated that the anodic dissolution reaction was effectively limited and the corrosion resistance increased by the Fe3O4 coating. The key factors and growth mechanism for the hydrothermal formation of the Fe3O4 coating are also discussed.  相似文献   

19.
We have investigated cathodeluminescence (CL) of Ge implanted SiO2:Ge and GeO2:Ge films. The GeO2 films were grown by oxidation of Ge substrate at 550 °C for 3 h in O2 gas flow. The GeO2 films on Ge substrate and SiO2 films on Si substrate were implanted with Ge-negative ions. The implanted Ge atom concentrations in the films were ranging from 0.1 to 6.0 at%. To produce Ge nanoparticles the SiO2:Ge films were thermally annealed at various temperatures of 600-900 °C for 1 h in N2 gas flow. An XPS analysis has shown that the implanted Ge atoms were partly oxidized. CL was observed at wavelengths around 400 nm from the GeO2 films before and after Ge-implantation as well as from SiO2:Ge films. After Ge-implantation of about 0.5 at% the CL intensity has increased by about four times. However, the CL intensity from the GeO2:Ge films was several orders of magnitude smaller than the intensity from the 800 °C-annealed SiO2:Ge films with 0.5 at% of Ge atomic concentration. These results suggested that the luminescence was generated due to oxidation of Ge nanoparticles in the SiO2:Ge films.  相似文献   

20.
M. Liu  G. He  Q. Fang  G.H. Li 《Applied Surface Science》2006,252(18):6206-6211
High-k HfO2-Al2O3 composite gate dielectric thin films on Si(1 0 0) have been deposited by means of magnetron sputtering. The microstructure and interfacial characteristics of the HfO2-Al2O3 films have been investigated by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and spectroscopic ellipsometry (SE). Analysis by XRD has confirmed that an amorphous structure of the HfO2-Al2O3 composite films is maintained up to an annealing temperature of 800 °C, which is much higher than that of pure HfO2 thin films. FTIR characterization indicates that the growth of the interfacial SiO2 layer is effectively suppressed when the annealing temperature is as low as 800 °C, which is also confirmed by spectroscopy ellipsometry measurement. These results clearly show that the crystallization temperature of the nanolaminate HfO2-Al2O3 composite films has been increased compared to pure HfO2 films. Al2O3 as a passivation barrier for HfO2 high-k dielectrics prevents oxygen diffusion and the interfacial layer growth effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号