首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A systematic investigation has been done on the correlation between texture, grain size evolution and magnetic properties in Ta/Ni81Fe19/Ir20Mn80/Co90Fe10/Ta exchange bias in dependence of Ta buffer and NiFe seed layer thickness in the range of 2-10 nm, deposited by pulsed DC magnetron sputtering technique. A strong dependence of 〈1 1 1〉 texture on the Ta/NiFe thicknesses was found, where the reducing and increasing texture was correlated with exchange bias field and unidirectional anisotropy energy constant at both NiFe/IrMn and IrMn/CoFe interfaces. However, a direct correlation between average grain size in IrMn and Hex and Hc was not observed. L12 phase IrMn3 could be formed by thickness optimization of Ta/NiFe layers by deposition at room temperature, for which the maximum exchange coupling parameters were achieved. We conclude finally that the coercivity is mainly influenced by texture induced interfacial effects at NiFe/IrMn/CoFe interfaces developing with Ta/NiFe thicknesses.  相似文献   

2.
The metal 2p region spectra of the mixed valence spinels, Co3O4, Fe3O4, Mn3O4, and related compounds were studied. The satellite splittings of Co 2p32 for the octahedrally coordinated cobaltous ions are 6.2 eV and those for the tetrahedrally coordinated ones are about 5.3 eV. The Co 2p spectrum for Co3O4 is considered to be the sum of spectra of magnetic cobaltous ions and low-spin cobaltic ions. In the cases of Fe3O4 and Mn3O4, the oxidation states were not clearly distinguished because both the divalent and trivalent ions of iron and manganese are high-spin.  相似文献   

3.
A novel layered hydrotalcite-like material, Co7(H2O)2(OH)12(C2H4S2O6), has been prepared hydrothermally and the structure determined using single crystal X-ray diffraction (a=6.2752(19) Å, b=8.361(3) Å, c=9.642(3) Å, α=96.613(5)°, β=98.230(5)°, γ=100.673(5)°, R1=0.0551). The structure consists of brucite-like sheets where 1/6 of the octahedral sites are replaced by two tetrahedrally coordinated Co(II) above and below the plane of the layer. Ethanedisulfonate anions occupy the space between layers and provide charge balance for the positively charged layers. The compound is ferrimagnetic, with a Curie temperature of 33 K, Curie-Weiss θ of −31 K, and a coercive field of 881 Oe at 5 K.  相似文献   

4.
We studied the pseudo-spin-valves (PSVs) with a structure of Ta/Co2FeAl/NOL1/Co2FeAl/Cu/Co2FeAl/NOL2/Ta, where NOL represents the nano-oxide layer. Compared with the normal Co2FeAl (CFA) PSV with a structure of Ta/Co2FeAl/Cu/Co2FeAl/Ta, which shows only a current-in-plane (CIP) giant magnetoresistance (GMR) of 0.03%, the CFA PSV with NOLs shows a large CIP-GMR of 5.84%. The enhanced GMR by the NOLs inserted in the CFA PSV is due to the large specular reflection caused by [(CoO)(Fe2O3)(Al2O3)] in NOL1 and [(Fe2O3)(Al2O3)(Ta2O5)] in NOL2. Another reason is that the roughness of the interface between Ta and CFA is improved by the oxidation procedure.  相似文献   

5.
本文制备了用于费托合成反应的钴改性Fe3O4-MnO2双功能催化剂,并探究了钴负载量对Fe-Co协同效应的影响以及Fe1CoxMn1催化剂的费托合成反应性能. 实验发现,在Fe3O4-Mn催化剂中加入Co可促进铁氧化物的还原、增加反应过程中铁位点的活性. 此外,Co的加入可增强Fe-Co金属间的电子转移,加强两者的协同作用,提高催化性能. Co负载较高的Fe1CoxMn1催化剂可进一步促进加氢反应能力,使产品分布向短链烃方向转移. 在280 °C、2.0 MPa和3000 h-1的最佳工况条件下,Fe1Co1Mn1催化剂的液体燃料收率最高.  相似文献   

6.
It is known that acicular particles, initially of Fe3O4, which have been partially oxidised, show anomalous properties e.g. in the variation of Hc with composition. It is shown that these can be explained by considering the particles to comprise an inner core of Fe3O4 with an outer layer of γ-Fe2O3. Owing to the large change in volume which occurs on oxidation, these mutually stress each other. Over a certain range of composition, the stress field interacts with the magnetization to increase Hc, and it is also responsible for Hc increasing with time after the oxidation process. A similar situation applies to partially reduced γ-Fe2O3.  相似文献   

7.
The electronic structure, the metallic and magnetic properties of metal phosphonate Co[(CH3PO3)(H2O)] have been studied by first-principles calculations, which were based on the density-functional theory (DFT) and the full potential linearized augmented plane wave (FPLAPW) method. The total energy, the spin magnetic moments and the density of the states (DOS) were all calculated. The calculations reveal that the compound Co[(CH3PO3)(H2O)] has a stable metallic antiferromagnetic (AFM) ground state and a half-metallic ferromagnetic (FM) metastable state. Based on the spin distribution obtained from calculations, it is found that the spin magnetic moment of the compound is mainly from the Co2+, with some small contributions from the oxygen, carbon and phosphorus atoms, and the spin magnetic moment per molecule is 5.000μB, which is in good agreement with the experimental results.  相似文献   

8.
Specific heat data on the random mixtures FepCo1-pL6(ClO4)2, where L = C5H5NO, are presented. The Fe and Co magnetic atoms have competing anisotropies since the pure Fe and Co compounds are known to be good examples of the simple cubic, S = 12, Ising and XY magnet, respectively. The experimental data show the two magnetic subsystems in the mixtures to be almost completely decoupled, which is a consequence of the fact that the crystal field anisotropies of the Fe2+ and Co2+ ions, yielding g ? g and g ? g, respectively, are very strong compared to the magnetic exchange interactions. Consequently the two magnetic subsystems experience one another as nonmagnetic impurities. A model is presented which explains these results, as well as those previously found for related random mixtures, in terms of two interpenetrating percolation clusters.  相似文献   

9.
Influence of Co doping for In in In2O3 matrix has been investigated to study the effect on magnetic vs. electronic properties. Rietveld refinement of X-ray diffraction patterns confirmed formation of single phase cubic bixbyite structure without any parasitic phase. Photoelectron spectroscopy and refinement results further revealed that dopant Co2+ ions are well incorporated at the In3+ sites in In2O3 lattice and also ruled out formation of cluster in the doped samples. Magnetization measurements infer that pure In2O3 is diamagnetic and turns to weak ferromagnetic upon Co doping. Hydrogenation further induces a huge ferromagnetism at 300 K that vanishes upon re-heating. Experimental findings confirm the induced ferromagnetism to be intrinsic, and the magnetic moments to be associated with the point defects (oxygen vacancies Vo) or bound magnetic polarons around the dopant ions.  相似文献   

10.
As a possible candidate for the left-handed metamaterial with negative permeability, a series of Ti, Co-substituted M-type barium hexaferrite BaFe12−x(Ti0.5Co0.5)xO19 (x=0, 1, 2, 3, 4 and 5) was prepared by citrate precursor method. The formation processes of the substituted barium hexaferrite compounds from the precursors were followed by the measurements of powder X-ray diffraction (XRD), Infrared absorption spectra (FT-IR), and thermogravimetry and differential thermal analysis (TG/DTA) coupled with mass spectroscopy (MS). In the case of the non-substituted sample, the formation of the barium hexaferrite is regulated by the thermal decomposition of BaCO3 and the solid-state reactions of BaO and Fe2O3 in the temperature range from 800 to 1100 K. The formation temperature of the substituted BaFe12−x(Ti0.5Co0.5)xO19 is higher than that for the non-substituted sample and increases with the value of x, due to the effects of carbonate ions incorporated by the partial substitution of Fe3+ by (Ti0.5Co0.5)3+. On heating up to ca. 1200 K, all the substituted samples transform into the magenetoplumbite phase as is the non-substituted sample. The compositional dependence of the magnetic properties of the substituted barium hexaferrite was investigated by the magnetization measurement. The decrease in the magnetic anisotropy was confirmed by the change in the magnetization curve and coercivity HC with the composition x. A negative permeability spectrum was observed in the BaFe9(Ti0.5Co0.5)3O19 in the frequency range from 2 to 4 GHz.  相似文献   

11.
Chemical Li ion extraction processes have been carried out for pristine LiCoO2, LiCo0.95Ga0.05O2, and LiCo0.9Ga0.1O2 compounds by swirling them in 0.35 M H2SO4 solution. It is confirmed from XRD patterns that the compounds maintain the two-dimensional framework with pristine-type structure even after the acid treatment up to 12 h. The Ga-substituted compounds keep Li ions for longer time on the acid treatment rather than the LiCoO2. The average oxidation state of Co ions increases with the Li+ ion extraction time up to 3.45+. The local structure refinements for the chemically Li+ ion extracted compounds have been investigated by Co K-edge X-ray absorption spectroscopy. The extraction causes the increase of Debye-Waller (DW) factor or static disorder around the Co ion. The DW factor of the Co-Co bond pair less increases with the extraction time for the LiyCo0.95Ga0.05O2, and LiyCo0.9Ga0.1O2 compounds than that for the LiCoO2. The Ga-substituted compounds are more stable against acid treatments than the LiCoO2, since more basic Ga3+ ion retards the structural distortion of the CoO6 octahedra against the Li ion extraction.  相似文献   

12.
Ni1−xCoxFe2O4 (x=0.6, 0.8 and 0.9) nanoparticles have been synthesized with various crystallite sizes depending on the thermal treatments and composition (cobalt content) using the sol-gel combustion method. The size of nanoparticles has been controlled by thermal treatment. On the other hand, the magnetic property of the ferrite has been controlled by changing the heat treatment. Morphology and particle sizes of Ni1−xCoxFe2O4 have been studied using atomic force microscopy (AFM) and transmission electron microscopy (TEM). The presence of functional group has been identified by Fourier Transform Infrared (FTIR) spectra. From TGA-DTA studies, the weight gains of Ni1−xCoxFe2O4 nanoparticles have been observed and it might be due to capping organic molecules with oxygen at temperatures above 200 °C. Magnetic properties of Ni1−xCoxFe2O4 particles have been analysed using VSM and it is found that saturation magnetization (Ms) has increased with particle size and has coercivity (Hc) increased initially and then decreased. The Ms and Hc values decreased with the increase of content of cobalt in Ni1−xCoxFe2O4.  相似文献   

13.
张歆  章晓中  谭新玉  于奕  万蔡华 《物理学报》2012,61(14):147303-147303
随着能源危机的加剧,太阳能电池作为开发和利用太阳能的一种普遍形式, 日益受到世界各国的重视.随着太阳能电池向着高效率、薄膜化、无毒性和原材料丰富的方向发展, 单纯的硅系太阳能电池已经无法达到这样的要求,因此新的材料和工艺的开发利用迫在眉睫. 本文研究了碳材料在硅异质节上实现光伏效应的改善及其可能在太阳能电池上的应用. 采用脉冲激光沉积方法制备的Co2-C98/Al2O3/Si异质结构在标准日光照射 (AM1.5, 100 mW/cm2)条件下,可获得0.447 V的开路电压和18.75 mA/cm2的电流密度, 转换效率可达3.27%.通过电容电压特性和暗条件下的电输运性能测量, 证明了氧化铝层的引入不但对单晶硅的表面起到了物理钝化作用,减小了反向漏电流, 使异质结界面缺陷、界面能级和复合中心减少,还起到了场效应钝化作用, 增加了异质结界面的势垒高度,增加了开路电压,使异质结的光伏效应显著增强.  相似文献   

14.
Cobalt-substituted ferrite nanoparticles were synthesized with a narrow size distribution using reverse micelles formed in the system water/AOT/isooctane. Fe:Co ratios of 3:1, 4:1, and 5:1 were used in the synthesis, obtaining cobalt-substituted ferrites (CoxFe3−xO4) and some indication of γ-Fe3O4 when 4:1 and 5:1 Fe:Co ratios were used. Inductively coupled plasma mass spectroscopy (ICP-MS) verified the presence of cobalt in all samples. Fourier transform infrared (FTIR) showed bands at ∼560 and ∼400 cm−1, characteristic of the metal–oxygen bond in ferrites. Transmission electron microscopy showed that the number median diameter of the particles was ∼3 nm with a geometric deviation of ∼0.2. X-ray diffraction (XRD) confirmed the inverse spinel structure typical of ferrites with a lattice parameter of a=8.388 Å for Co0.61Fe0.39O4, which is near that of CoFe2O4 (a=8.394 Å). Magnetic properties were determined using a superconducting quantum interference device (SQUID). Coercivities higher than 8 kOe were observed at 5 K, whereas at 300 K the particles showed superparamagnetic behavior. The anisotropy constant was determined based on the Debye model for a magnetic dipole in an oscillating field and an expression relating χ′ and the temperature of the in-phase susceptibility peak. Anisotropy constant values in the order of ∼106 erg/cm3 were determined using the Debye model, whereas anisotropy constants in the order of ∼107 erg/cm3 were calculated assuming Ωτ=1 at the temperature peak of the in-phase component of the susceptibility curve as commonly done in the literature. Our analysis demonstrates that the assumption Ωτ=1 at the temperature peak of χ′ is rigorously incorrect.  相似文献   

15.
The interface formation, electrical properties and the surface morphology of multilayered Ta/Ni/Ta/SiC contacts were reported in this study. It was found that the conducting behavior of the contacts so fabricated is much dependent on the metal layer thickness and the subsequent annealing temperature. Auger electron spectroscopy (AES) and X-ray diffraction analyses revealed that Ni2Si and TaC formed as a result of the annealing. The Ni atoms diffused downward to metal/SiC interface and converted into Ni2Si layer in adjacent to the SiC substrate. The released carbon atoms reacted with Ta atoms to form TaC layer. Ohmic contacts with specific contact resistivity as low as 3 × 10−4 Ω cm2 have been achieved after thermal annealing. The formation of carbon vacancies at the Ni2Si/SiC interface, probably created by dissociation of SiC and formation of TaC during thermal annealing, should be responsible for the ohmic formation of the annealed Ta/Ni/Ta contacts. The addition of Ta into the Ni metallization scheme to n-SiC restricted the accumulation of carbon atoms left behind during Ni2Si formation, improving the electrical and microstructure properties.  相似文献   

16.
The erbium-based manganite ErMnO3 has been partially substituted at the manganese site by the transition-metal elements Ni and Co. The perovskite orthorhombic structure is found from x(Ni)=0.2–0.5 in the nickel-based solid solution ErNixMn1−xO3, while it can be extended up to x(Co)=0.7 in the case of cobalt, provided that the synthesis is performed under oxygenation conditions to favor the presence of Co3+. Presence of different magnetic entities (i.e., Er3+, Ni2+, Co2+, Co3+, Mn3+, and Mn4+) leads to quite unusual magnetic properties, characterized by the coexistence of antiferromagnetic and ferromagnetic interactions. In ErNixMn1−xO3, a critical concentration xcrit(Ni)=1/3 separates two regimes: spin-canted AF interactions predominate at x<xcrit, while the ferromagnetic behavior is enhanced for x>xcrit. Spin reversal phenomena are present both in the nickel- and cobalt-based compounds. A phenomenological model based on two interacting sublattices, coupled by an antiferromagnetic exchange interaction, explains the inversion of the overall magnetic moment at low temperatures. In this model, the ferromagnetic transition-metal lattice, which orders at Tc, creates a strong local field at the erbium site, polarizing the Er moments in a direction opposite to the applied field. At low temperatures, when the contribution of the paramagnetic erbium sublattice, which varies as T−1, gets larger than the ferromagnetic contribution, the total magnetic moment changes its sign, leading to an overall ferrimagnetic state. The half-substituted compound ErCo0.50Mn0.50O3 was studied in detail, since the magnetization loops present two well-identified anomalies: an intersection of the magnetization branches at low fields, and magnetization jumps at high fields. The influence of the oxidizing conditions was studied in other compositions close to the 50/50=Mn/Co substitution rate. These anomalies are clearly connected to the spin inversion phenomena and to the simultaneous presence of Co2+ and Co3+ magnetic moments. Dynamical aspects should be considered to well identify the high-field anomaly, since it depends on the magnetic field sweep rate.  相似文献   

17.
Magnetoelectric (ME) nanocomposites containing Ni0.75Co0.25Fe2O4-BiFeO3 phases were prepared by citrate sol-gel process. X-ray diffraction (XRD) analysis showed phase formation of xNi0.75Co0.25Fe2O4-(1−x)BiFeO3 (x=0.1, 0.2, 0.3 and 0.4) composites on heating at 700 °C. Transmission electron microscopy revealed the formation of powders of nano order size and the crystal size was found to vary from 30 to 85 nm. Dispersion in dielectric constant (ε) and dielectric loss (tan δ) in the low-frequency range have been observed. It is seen that nanocomposites exhibit strong magnetic properties and a large ME effect. On increasing Ni0.75Co0.25Fe2O4 contents in the nanocomposites, the saturation magnetization (MS) and coercivity (HC) increased after annealing at 700 °C. The large ME output in the nanocomposites exhibits strong dependence on magnetic bias and magnetic field frequency. The large value of ME output can be attributed to small grain size of ferrite phase of nanocomposite being prepared by citrate precursor process.  相似文献   

18.
The exchange bias (HE) and coercivity (HC) of the ferromagnet/antiferromagnet (FM/AFM) films have been simulated with Monte Carlo method. The simulated results indicate that, the value of HE decreases with increasing temperature, and the values of HE and the blocking temperature Tb at which HE=0 reduce evidently with decreasing absolute value of interlayer exchange coupling JI. It also is found that for the large absolute values of JI, the maximum in HC occurs very close to Tb. At the same time, it is observed that the diluted ratio of FM at FM/AFM interface influences clearly the value of HE. The simulated results are consistent with the experimental facts. The maximum behaviour in the HCT curves has been explained by the interplay of the softening of some fraction of the spins in the AFM layer near TN′ and the disorder of the spins in FM layer near Curie temperature TC.  相似文献   

19.
Recently, we have discovered a new type of first order phase transition around 120 K for (n-C3H7)4N[FeIIFeIII(dto)3] (dto=C2O2S2), where the charge transfer transition between FeII and FeIII occurs reversibly. In order to elucidate the origin of this peculiar first order phase transition. Detailed information about the crystal structure is indispensable. We have synthesized the single crystal of (n-C3H7)4N[CoIIFeIII(dto)3] whose crystal structure is isomorphous to that of (n-C3H7)4N[FeIIFeIII(dto)3], and determined its detailed crystal structure. Crystal data: space group P63, a=b=10.044(2) Å, c=15.960(6) Å, α=β=90°, γ=120°, Z=2 (C18H28NS6O6FeCo). In this complex, we found a ferromagnetic transition at Tc=3.5 K. Moreover, on the basis of the crystal data of (n-C3H7)4N[CoIIFeIII(dto)3], we determined the crystal structure of (n-C3H7)4N[FeIIFeIII(dto)3] by simulation of powder X-ray diffraction results.  相似文献   

20.
Particulate composites with composition (x)BaTiO3+(1−x)Ni0.92Co0.03Cu0.05Fe2O4 in which x varies as 1, 0.85, 0.70, 0.55 and 0 (in mol%) were prepared by the conventional double sintering ceramic technique. The presence of two phases viz. ferromagnetic (Ni0.92Co0.03Cu0.05Fe2O4) and ferroelectric (BaTiO3) was confirmed by X-ray diffraction analysis. The dc resistivity and thermo-emf measurements were carried out with variation of temperature. The ac conductivity (σac) measurements investigated in the frequency range 100 Hz to 1 MHz conclude that the conduction in these composites is due to small polarons. The variation of dielectric constant and loss tangent with frequency (20 Hz to 1 MHz) was studied. The static magnetoelectric conversion factor, i.e. dc (dE/dH)H was measured as a function of intensity of applied magnetic field. The changes were observed in electrical properties as well as in magnetoelectric voltage coefficient as the molar ratio of the constituent phases was varied. A maximum value of magnetoelectric conversion factor of 536.06 μV/cm Oe was observed for the composite with 70% BaTiO3+30% Ni0.92Co0.03Cu0.05Fe2O4 at a dc magnetic field of 2.3 K Oe. The maximum magnetoelectric conversion output has been explained in terms of ferrite-ferroelectric content, applied static magnetic field and resistivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号