共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal stability of SiGe films on an ultra thin Ge buffer layer on Si fabricated at low temperature has been studied. The microstructure and morphology of the samples were investigated by high-resolution X-ray diffraction, Raman spectra and atomic force microscopy, and using a diluted Secco etchant to reveal dislocation content. After thermal annealing processing, it is observed that undulated surface, threading dislocations (TDs) and stacking faults (SFs) appeared at the strained SiGe layer, which developed from the propagation of a misfit dislocation (MD) during thermal annealing, and no SFs but only TDs formed in strain-relaxed sample. And it is found that the SiGe films on the Ge layer grown at 300 °C has crosshatch-free surface and is more stable than others, with a root mean square surface roughness of less than 2 nm and the threading dislocation densities as low as ∼105 cm−2. The results show that the thermal stability of the SiGe films is associated with the Ge buffer layer, the relaxation extent and morphology of the SiGe layer. 相似文献
2.
The results reported concern the characterization of thin layer SiO2-based matrices with an oxygen sensing component Ru(II)-tris(4,7-diphenyl-1,10-phenanthroline) immobilized, when a sol-gel process along with dip- and spin-coating deposition methods are used.SEM, TEM and AFM study, assisted by X-ray energy dispersive microanalysis reveals the influence of the precursors used, sol treatment and the coating conditions on the films morphology and Ru distribution in the matrices. Uniform and smooth surface is produced from tetraethoxysilane (TEOS). The presence of ormosils (methyltriethoxysilane, MtEOS and octyltriethoxysilane, OtEOS) significantly increases the surface roughness exhibited as dots on the SEM image. Their surface concentration and size depend on the number of immersions and withdrawal speed at the dip coating. Spin deposition leads to rather different morphology of the films, based on TEOS/OtEOS. Following commonly used sol preparation procedure (with 1.25-2.5 g Ru-complex/dm3 sol) microcrystallization of the complex occurs with formation of randomly distributed crystals 100-400 nm in size. The ultrasound treatment of the sol by means of ultrasound disintegrator leads to homogeneous distribution of the complex without observable crystallization and significant improvement of the film sensing properties (increase of Stern-Volmer constant and better linearity of the Stern-Volmer plots both in gaseous and aqueous media). 相似文献
3.
Hideo Kaiju Akito Ono Kenji Kondo Jonghan Won Manabu Ishimaru 《Applied Surface Science》2009,255(6):3706-3712
We study the structural properties of the surface roughness, the surface mound size and the interfacial structure in Ni thin films vacuum-deposited on polyethylene naphthalate (PEN) organic substrates with and without the application of magnetic field and discuss its feasibility of fabricating quantum cross (QC) devices. For Ni/PEN evaporated without the magnetic field, the surface roughness decreases from 1.3 nm to 0.69 nm and the surface mound size increases from 32 nm to 80 nm with the thickness increased to 41 nm. In contrast, for Ni/PEN evaporated in the magnetic field of 360 Oe, the surface roughness tends to slightly decrease from 1.3 nm to 1.1 nm and the surface mound size shows the almost constant value of 28-30 nm with the thickness increased to 35 nm. It can be also confirmed for each sample that there is no diffusion of Ni into the PEN layer, resulting in clear Ni/PEN interface and smooth Ni surface. Therefore, these experimental results indicate that Ni/PEN films can be expected as metal/insulator hybrid materials in QC devices, leading to novel high-density memory devices. 相似文献
4.
J.Y. Wang 《Applied Surface Science》2006,252(15):5347-5350
A general theoretical analysis of the effect of film thickness on equilibrium and kinetic surface segregation in binary alloy thin films is presented. In this analysis, a constrained condition that represents the finite size of thin film system has been introduced to the modified Darken model, which has been used to describe both equilibrium and kinetic surface segregation in bulk materials. Simulation of surface segregation for alloy thin films can be carried out for all composition ranges and all film thicknesses if only knowing the surface segregation parameters for bulk materials. Simulations of equilibrium and kinetic surface segregation in Cu(1 1 1)Ag binary alloy thin film are presented. 相似文献
5.
In this paper, we report on the preparation of lead zirconate films for the first time using atomic layer deposition in an attempt to investigate some of the film properties and also to evaluate possible use of the precursor combination to prepare more complex lead titanate zirconate. In the depositions tetraphenyl lead (Ph4Pb) was used as the lead and zirconium 2,2,6,6-tetramethyl-3,5-heptadionato (Zr(thd)4) as the zirconium precursor, while ozone was used as the oxygen source. Film growth, stoichiometry and quality were studied using different pulsing ratios at deposition temperatures of 275 and 300 °C. According to X-ray diffraction, the crystalline perovskite phase was observed when films deposited on SrTiO3(1 0 0) were annealed at 600 °C. Surface roughness was reduced for lead deficient films as well as in annealed samples. 相似文献
6.
R. Lüthi H. Haefke E. Meyer L. Howald H. -P. Lang G. Gerth H. -J. Güntherodt 《Zeitschrift für Physik B Condensed Matter》1994,95(1):1-3
Scanning force microscopy (SFM) was employed to characterize C60 island films in an ultra-high vacuum (UHV). The initial growth stage of C60 on NaCl cleavage faces and nanotribological properties of this solid lubricant are investigated. In comparison to the NaCl(001) face, higher friction is measured on the C60 islands, resulting in a ratio of friction of 13 for NaClC60. The friction coefficient of the (111) oriented C60 island is determined to be 0.15±0.05. High-resolution SFM images reveal the hexagonal lattice of the unreconstructed (111) top surfaces and the overgrowth relationships of the C60 islands. 相似文献
7.
Thermal stability of Ag layer on Ti coated Si substrate for different thicknesses of the Ag layer have been studied. To do this, after sputter-deposition of a 10 nm Ti buffer layer on the Si(1 0 0) substrate, an Ag layer with different thicknesses (150-5 nm) was sputtered on the buffer layer. Post annealing process of the samples was performed in an N2 ambient at a flow rate of 200 ml/min in a temperature range from 500 to 700 °C for 30 min. The electrical property of the heat-treated multilayer with the different thicknesses of Ag layer was examined by four-point-probe sheet resistance measurement at the room temperature. Phase formation and crystallographic orientation of the silver layers were studied by θ-2θ X-ray diffraction analysis. The surface topography and morphology of the heat-treated films were determined by atomic force microscopy, and also, scanning electron microscopy. Four-point- probe electrical measurement showed no considerable variation of sheet resistance by reducing the thickness of the annealed Ag films down to 25 nm. Surface roughness of the Ag films with (1 1 1) preferred crystallographic orientation was much smaller than the film thickness, which is a necessary condition for nanometric contact layers. Therefore, we have shown that the Ag layers with suitable nano-thicknesses sputtered on 10 nm Ti buffer layer were thermally stable up to 700 °C. 相似文献
8.
Štefan Chromik Marianna Španková Jozef Liday Peter Lobotka 《Applied Surface Science》2008,254(12):3635-3637
Epitaxial MgO thin films have been grown on semiinsulating GaAs (0 0 1) substrates using electron beam (e-beam) evaporation. X-ray diffraction indicates c-axis oriented MgO with (0 0 2) reflection only and rocking curve widths ∼2.2-3°. Transmission electron microscopy (TEM) analyses confirm an epitaxial growth of the MgO films. We study the microstructure and the defects at the interface between the MgO film and the GaAs substrate. Auger electron Spectroscopy (AES) concentration depth profiles reveal no contamination of the MgO films by As and Ga at different temperatures of the deposition process. 相似文献
9.
Structural and optical properties of ZnO thin films prepared by sol-gel method with different thickness 总被引:1,自引:0,他引:1
In this work, ZnO thin films with different thickness were prepared by sol-gel method on glass substrates and the structural and optical properties of these films were studied by X-ray diffractometer, atomic force microscope, UV-visible spectrophotometer, ellipsometer and fluorophotometer, respectively. The structural analyses show that all the samples have a wurtzite structure and are preferentially oriented along the c-axis perpendicular to the substrate surface. The growth process of highly c-axis oriented ZnO thin films derived from sol-gel method is a self-template process. With the increase of film thickness, the structural disorder decreases and the crystalline quality of the films is gradually improved. A transition of crystal growth mode from vertical growth to lateral growth is observed and the transition point is found between 270 and 360 nm thickness. The optical analyses show that with the increase of film thickness, both the refractive index and ultraviolet emission intensity are improved. However, the transmittance in the visible range is hardly influenced by the film thickness, and the averages are all above 80%. 相似文献
10.
Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH3COO)2 as Pb2+ and Na2SeSO3 as Se2− ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV. 相似文献
11.
S. Pal 《Applied Surface Science》2007,253(6):3317-3325
Tungsten oxide (WO3) thin films were deposited by a modified hot filament chemical vapor deposition (HFCVD) technique using Si (1 0 0) substrates. The substrate temperature was varied from room temperature to 430 °C at an interval of 100 °C. The influence of the substrate temperature on the structural and optical properties of the WO3 films was studied. X-ray diffraction and Raman spectra show that as substrate temperature increases the film tends to crystallize from the amorphous state and the surface roughness decreases sharply after 230 °C as confirmed from AFM image analysis. Also from the X-ray analysis it is evident that the substrate orientation plays a key role in growth. There is a sharp peak for samples on Si substrate due to texturing. The film thickness also decreases as substrate temperature increases. UV-vis spectra show that as substrate temperature increases the film property changes from metallic to insulating behavior due to changing stoichiometry, which was confirmed by XPS analysis. 相似文献
12.
In this work, we have studied thermal stability of nanoscale Ag metallization and its contact with CoSi2 in heat-treated Ag(50 nm)/W(10 nm)/Co(10 nm)/Si(1 0 0) multilayer fabricated by sputtering method. To evaluate thermal stability of the systems, heat-treatment was performed from 300 to 900 °C in an N2 ambient for 30 min. All the samples were analyzed by four-point-probe sheet resistance measurement (Rs), Rutherford backscattering spectrometry (RBS), X-ray diffractometry (XRD), and atomic force microscopy (AFM). Based on our data analysis, no interdiffiusion, phase formation, and Rs variation was observed up to 500 °C in which the Ag layer showed a (1 1 1) preferred crystallographic orientation with a smooth surface and Rs of about 1 Ω/□. At 600 °C, a sharp increase of Rs value was occurred due to initiation of surface agglomeration, WSi2 formation, and interdiffusion between the layers. Using XRD spectra, CoSi2 formed at the Co/Si interface preventing W silicide formation at 750 and 800 °C. Meantime, RBS analysis showed that in this temperature range, the W acts as a cap layer, so that we have obtained a W encapsulated Ag/CoSi2 contact with a smooth surface. At 900 °C, the CoSi2 layer decomposed and the layers totally mixed. Therefore, we have shown that in Ag/W/Co/Si(1 0 0) multilayer, the Ag nano-layer is thermally stable up to 500 °C, and formation of W-capped Ag/CoSi2 contact with Rs of 2 Ω/□ has been occurred at 750-800 °C. 相似文献
13.
Ramesh Chandra Mallik 《Solid State Communications》2005,134(3):211-216
Polycrystalline bulk materials of Bi93Sb7 Bi88Sb12, Bi85Sb15 and Bi80Sb20 were synthesized by melt-quench technique starting from the stoichiometric mixture of constituent elements. The phase purity and compositional uniformity of bulk materials were investigated using powder X-ray diffraction (XRD) and proton induced X-ray emission (PIXE) experiments. The single phase formation and the compositional analysis of thin films were confirmed by transmission electron microscopy (TEM) and Rutherford backscattering spectroscopy (RBS). X-ray diffraction studies confirmed the phase homogeneity of the materials. Atomic concentration ratio of constituent elements (Bi and Sb) determined by PIXE and RBS revealed that near-stoichiometric composition is nearly the same in the bulk as well as in thin film forms. 相似文献
14.
Jing Lv Limei Lin Yongzhong Lin Zhigao Huang Rong Chen 《Applied Surface Science》2007,253(17):7036-7040
The thermal stability of silver films in air has been studied. Pure Ag films, 250 nm in thickness, were prepared on glass substrates by thermal evaporation process, and subsequently annealed in air for 1 h at temperatures between 200 and 400 °C. The structure and morphology of the samples were investigated by X-ray diffraction, Raman spectra and atomic force microscopy. It is found that the crystallization enhances for the annealed films, and film surface becomes oxidized when annealing temperature is higher than 350 °C. The electrical and optical properties of the films were studied by van der Pauw method and spectrophotometer, respectively. Reflectance drops sharply as Ag films are annealed at temperatures above 250 °C. Film annealed at 250 °C has the maximum surface roughness and the minimum reflectance at 600 nm optical wavelength. Film annealed at 200 °C has the minimum resistivity, and resistivity increases with the increasing of the annealing temperature when temperature is above 200 °C. The results show that both oxidization on film surface and agglomeration of silver film result in infinite of electrical resistivity as the annealing temperature is above 350 °C. 相似文献
15.
In this paper, we have performed ab initio density functional theory calculations to compare the miscibility and magnetic properties of two-dimensional binary surface alloys of the form MxN1−x (M = Fe or Co; N = Pt, Au, Ag, Cd or Pb) on two different substrates - Rh(1 1 1) and Ru(0 0 0 1). The trends in miscibility for the two substrates are found to be strikingly similar. The magnetic moments show qualitatively similar behavior, but their magnitudes differ: surface alloys on Rh(1 1 1) have larger magnetic moments than on Ru(0 0 0 1). We infer that strain plays the determining role in stabilizing these two-dimensional alloys, whereas the differences in magnetic moments can be ultimately attributed to the different number of d-electrons in Rh and Ru. 相似文献
16.
M. Suchea S. Christoulakis M. Katharakis G. Kiriakidis N. Katsarakis E. Koudoumas 《Applied Surface Science》2007,253(19):8141-8145
Zinc oxide films of 40 nm thickness have been deposited on glass substrates by pulsed laser deposition using an excimer XeCl laser (308 nm) at different substrate temperatures ranging from room temperature to 650 °C. Surface investigations carried out by using atomic force microscopy have shown a strong influence of temperature on the films surface topography. UV-VIS transmittance measurements have shown that our ZnO films are highly transparent in the visible wavelength region, having an average transmittance of ∼90%. The optical band gap of the films was found to be 3.26 eV, which is lower than the theoretical value of 3.37 eV. Besides the normal absorption edge related to the transition between the valence and the conduction band, an additional absorption band was also recorded in the wavelength region around 364 nm (∼3.4 eV). This additional absorption band may be due to excitonic, impurity, and/or quantum size effects. Photoreduction/oxidation in ozone of the ZnO films lead to larger conductivity changes for higher deposition temperature. In conclusion, the ozone sensing characteristics as well as the optical properties of the ZnO thin films deposited by pulsed laser deposition are strongly influenced by the substrate temperature during growth. The sensitivity of the films towards ozone might be enhanced significantly by the control of the films deposition parameters and surface characteristics. 相似文献
17.
We have investigated the oxygen pressure and the temperature dependence on BiFeO3 thin films deposited on SrTiO3 substrates by pulsed laser deposition. Reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM) and X-ray diffraction measurements indicate that high-quality epitaxial thin films are obtained for and T=650 °C. Outside of this pressure-temperature window, parasitic peaks attributed to β-Bi2O3 appear. We find an increase of the out-of-plane lattice parameter with oxygen pressure that we ascribe to Bi-deficiency due to its high volatility at low pressure. Ex-situ anneals have been performed and results show that as-grown single-phase BiFeO3 thin films degrade after annealing, whereas as-grown BiFeO3 containing impurity phases evolve toward a single-phase structure. These experiments demonstrate that parasitic phases can stabilize compounds which are usually unstable in air at elevated temperatures. 相似文献
18.
Yonghai Song 《Applied Surface Science》2008,254(11):3306-3312
The structure of n-hexadecanoic acid (HA) multilayers formed by spreading an ethanol solution containing this molecule onto a freshly cleaved mica surface has been studied by atomic force microscopy (AFM). AFM images of multilayers obtained with different coating time showed that HA molecules first formed some sporadic domains on mica surface. With the proceeding of the coating process, these domains gradually enlarged and coalesced, until formed a continuous film finally. It was observed that HA molecules were always adsorbed on mica surface with tilted even-numbered layers structure. The height of the repeated tilted bilayer film was measured to be approximately 3.8 ± 0.2 nm, which implied a ∼60° tilt molecular conformation of the HA bilayers on mica surface. Phase image confirmed that the HA multilayers terminated with the hydrophilic carboxylic acid groups. The formation mechanism of the HA multilayers was discussed in detail. Thus, resulted hydrophilic surfaces are of special interest for further study in biological or man-made member systems. 相似文献
19.
Tobat P.I. Saragi Christoph Schmidt Tanja Weis Arno Ehresmann 《Journal of magnetism and magnetic materials》2009,321(14):2204-2209
The surface and interface morphology and magnetization characteristics of Co70Fe30 thin films deposited on bare glass and p-Si/SiO2 substrates and on conjugated polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) thin films on such substrates have been studied by atomic force microscopy and magneto-optic Kerr effect. It was found that the average absolute magnitude of the coercive field of Co70Fe30 correlates with the roughness of the underlayer prior to Co70Fe30 deposition. P3HT deposited on p-Si/SiO2 substrates possesses an increased surface roughness as compared to the p-Si/SiO2 surface, but displays a decreased surface roughness as compared to the one of a bare glass substrate. 相似文献
20.
S. Christoulakis M. Suchea E. Koudoumas N. Katsarakis G. Kiriakidis 《Applied Surface Science》2006,252(15):5351-5354
Transparent zinc oxide (ZnO) thin films with a thickness from 10 to 200 nm were prepared by the PLD technique onto silicon and Corning glass substrates at 350 °C, using an Excimer Laser XeCl (308 nm). Surface investigations carried out by atomic force microscopy (AFM) and X-ray diffraction (XRD) revealed a strong influence of thickness on film surface topography. Film roughness (RMS), grain shape and dimensions correlate with film thickness. For the 200 nm thick film, the RMS shows a maximum (13.9 nm) due to the presence of hexagonal shaped nanorods on the surface. XRD measurements proved that the films grown by PLD are c-axis textured. It was demonstrated that the gas sensing characteristics of ZnO films are strongly influenced and may be enhanced significantly by the control of film deposition parameters and surface characteristics, i.e. thickness and RMS, grain shape and dimension. 相似文献