首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) transmission, and Hall effect measurements were performed to investigate the structural, optical, and electrical properties of as-grown and in situ-annealed Hg0.7Cd0.3Te epilayers grown on CdTe buffer layers by using molecular beam epitaxy. After the Hg0.7Cd0.3Te epilayers had been annealed in a Hg-cell flux atmosphere, the SEM images showed that the surface morphologies of the Hg0.7Cd0.3Te thin films were mirror-like with no indication of pinholes or defects, and the FTIR spectra showed that the transmission intensities had increased in comparison to that of the as-grown Hg0.7Cd0.3Te epilayer. Hall-effect measurements showed that n-Hg0.7Cd0.3Te epilayers were converted to p-Hg0.7Cd0.3Te epilayers. These results indicate that the surface, optical, and electrical properties of the Hg1 − xCdxTe epilayers are improved by annealing and that as-grown n-Hg1 − xCdxTe epilayers can be converted to p-Hg1 − xCdxTe epilayers by in situ annealing.  相似文献   

2.
The surface modification of Cd1−xMnxTe (x = 0-0.3) crystal wafers under pulsed laser irradiation has been studied. The samples were irradiated by a Q-switched ruby laser with pulse duration of 80 ns. Optical diagnostics of laser-induced thermal processes were carried out by means of time-resolved reflectivity measurements at wavelengths 0.53 and 1.06 μm. Laser irradiation energy density, E varied in the range of 0.1-0.6 J/cm2. Morphology of irradiated surface was studied using scanning electron microscopy. The energy density whereby the sample surface starts to melt, depends on Mn content and is equal to 0.12-0.14 J/cm2 for x ≤ 0.2, in the case of x = 0.3 this value is about 0.35 J/cm2. The higher Mn content leads to higher melt duration. The morphology of laser irradiated surface changes from a weakly modified surface to a single crystal strained one, with an increase in E. Under irradiation with E in the range of 0.21-0.25 J/cm2, the oriented filamentary crystallization is observed. The Te inclusions on the surface are revealed after the irradiation of samples with small content of Mn.  相似文献   

3.
Injection of spin-polarized current into spintronic devices is a challenge to the semiconductor physicists and technologists. II-VI compound semiconductors can act as the spin aligner on the top of GaAs light emitting diode. However, II-VI compound semiconductor like Cd1−xMnxTe is still suffering from contacting problem. Application of electroless deposited magnetic NiP:Mn contact would enhance efficient current injection into Cd1−xMnxTe than the standard gold contact. A technique for electroless deposition of NiP:Mn on Cd1−xMnxTe have been described here. The electronic and magnetic properties of the contact material NiP:Mn and the contact performance of NiP:Mn relative to evaporated gold have been evaluated. The contact fulfills the requirements of resistivity and ferromagnetism for application to Cd1−xMnxTe.  相似文献   

4.
Resonant photoemission study of electronic structure of molecular beam epitaxy grown Eu1−xGdxTe layers without and with cover protected layer of Te were performed using synchrotron radiation. The analysis of the valence band and shallow core levels spectra of the clean surface of Eu1−xGdxTe obtained in situ under UHV conditions showed the existence of Eu2+ and Eu3+ ions in the layers. The trivalent europium ions mostly are located at the surface and its amount strongly depends on sample surface preparation conditions. The prolonged annealing of Eu1−xGdxTe layers covered with protected layer of Te leads to formation of clean surface of the sample not changing the stoichiometry of it and without the accumulation of Eu3+ ions at the surface region.  相似文献   

5.
Two variants of CuPtB-type orderings in strained CdxZn1−xTe epilayers were investigated by using transmission electron microscopy (TEM) and selected area diffraction pattern (SADP) measurements. The TEM images on the Cd0.15Zn0.85Te epilayers depicted strong contrast modulations along the [110] direction, and the SADP images showed superstructure reflection spots corresponding to a CuPtB-type ordering. Possible crystal structures for the two variants of CuPtB-type ordering in the CdxZn1−xTe epilayers, which were determined from the SADP images, are presented.  相似文献   

6.
Structural, electronic and optical properties as well as structural phase transitions of ternary alloy CdxZn1 − xS have been investigated using the first-principles calculations based on the density functional theory. We found that the crystal structure of CdxZn1 − xS alloys transforms from wurtzite to zinc blende as Cd content of x=0.83x=0.83. Effect of Cd content on electronic structures of CdxZn1 − xS alloys has been studied. The bandgaps of CdxZn1 − xS alloys with wurtzite and zinc blende structures decrease with the increase of Cd content. Furthermore, dielectric constant and absorption coefficient also have been discussed in detail.  相似文献   

7.
Ternary polycrystalline Zn1−xCdxO semiconductor films with cadmium content x ranging from 0 to 0.23 were obtained on quartz substrate by pulse laser deposited (PLD) technique. X-ray diffraction measurement revealed that all the films were single phase of wurtzite structure grown on c-axis orientation with its c-axis lattice constant increasing as the Cd content x increasing. Atomic force microscopy observation revealed that the grain size of Zn1−xCdxO films decreases continuously as the Cd content x increases. Both photoluminescence and optical measurements showed that the band gap decreases from 3.27 to 2.78 eV with increasing the Cd content x. The increase in Cd content x also leads to the broadening of the emission peak. The resistivity of Zn1−xCdxO films decreases evidently for higher values of Cd content x. The shift of PL emission to visible light as well as the decrease of resistivity makes the Zn1−xCdxO films potential candidate for optoelectronic device.  相似文献   

8.
Ab-initio calculations are performed to investigate the structural, electronic and magnetic properties of spin-polarized diluted magnetic semiconductors composed of II-VI compounds Cd1−xCoxX (X=S, Se, Te) at x=0.25. From the calculated results of band structure and density of states, the half-metallic character and stability of ferromagnetic state for Cd1−xCoxS, Cd1−xCoxSe and Cd1−xCoxTe alloys are determined. It is found that the tetrahedral crystal field gives rise to triple degeneracy t2g and double degeneracy eg. Furthermore, we predict the values of spin-exchange splitting energies Δx(d) and Δx(pd) and exchange constants N0α and N0β produced by the Co 3d states. Calculated total magnetic moments and the robustness of half-metallicity of Cd1−xCoxX (X=S, Se, Te) with respect to the variation in lattice parameters are also discussed. We also extend our calculations to x=0.50, 0.75 for S compounds in order to observe the change due to increase in Co.  相似文献   

9.
X-ray photoelectron (XPS) studies of core-levels in Sn1−xMnxTe (x < 0.1) semimagnetic semiconductors have been performed. The spectra were acquired under UHV conditions from the clean (as-cleaved or in-situ scraped) crystal surface. The single-phase NaCl structure of the alloys studied was verified by X-ray diffraction (XRD). The structure of Sn 3d and Te 3d core-levels in SnMnTe was found fully consistent with that of SnTe. Remarkable qualitative similarity of the Mn 2p spectrum of Sn1−xMnxTe (x = 0.09) with the case of zinc-blende MnTe [R.J. Iwanowski, M.H. Heinonen, E. Janik, Chem. Phys. Lett. 387 (2004) 110] has been shown: (1) the same binding energies (BEs) of the main contributions to the Mn 2p3/2 line, related to Mn2+ state of the bulk MnTe bond; (2) occurrence of low BE component in the Mn 2p spectrum, indicative of clean-surface species containing reduced-valence Mn ions (i.e. Mnq+, where 0 < q < 2); (3) strong satellites of the 2p3/2 (Mn2+ related) parent lines. In SnMnTe, the highest intensity ratio of the satellite to main peak (ever reported for Mn 2p photoelectron spectrum) was revealed; this was interpreted in terms of the so-called charge-transfer model.  相似文献   

10.
A study is made of spin effects on the Shubnikov-de Haas oscillations in CdxHg1?xTe alloys. The difference between the longitudinal and transverse magnetoresistances can be interpreted in terms of the spin-orbit couplings.  相似文献   

11.
Phase relationships, thermal expansion and electrical properties of Mg1 − xFexO (x = 0.1-0.45) cubic solid solutions and Fe3 − x − yMgxCryO4 ± δ (x = 0.7-0.95; y = 0 or 0.5) spinels were studied at 300-1770 K in the oxygen partial pressure range from 10 Pa to 21 kPa. Increasing iron content enlarges the spinel phase stability domain at reduced oxygen pressures and elevated temperatures. The total conductivity of the spinel ceramics is predominantly n-type electronic and is essentially p(O2)-independent within the stability domain. The computer simulations using molecular dynamics technique confirmed that overall level of ion diffusion remains low even at high temperatures close to the melting point. Temperature dependencies of the total conductivity in air exhibit a complex behavior associated with changing the dominant defect-chemistry mechanism from prevailing formation of the interstitial cations above 1370-1470 K to the generation of cation vacancies at lower temperatures, and with kinetically frozen cation redistribution in spinel lattice below 700-800 K. The average thermal expansion coefficients of the spinel ceramics calculated from dilatometric data in air vary in the range (9.6-10.0) × 10− 6 K− 1 at 300-500 K and (13.2-16.1) × 10− 6 K− 1 at 1050-1370 K. Mg1 − xFexO solid solutions undergo partial decomposition on heating under oxidizing and mildly reducing conditions, resulting in the segregation of spinel phase and conductivity decrease.  相似文献   

12.
Shubnikov-de Haas oscillations in n-Pb1?xSnxTe have been measured in the magnetic field parallel to the [100] crystal direction at 1.5 K. In the longitudinal magnetoresistances, the one-side peaks of spin-splitting pair series are completely missing. This anomaly is well explained by the selection rules, theoretically derived in the study on a similar effect in Hg1?xCdxTe. Landau sublevel-crossings are also discussed.  相似文献   

13.
Cyclotron resonance experiments have been performed in transmission at 337 μm on Hg1?xCdxTe single crystals with x = 0.20 and 0.215, at temperatures between 77 and 150 K.  相似文献   

14.
Changes in the resistivity of Hg1?xMnxTe and Cd1?xMnxSe mixed crystals associated with paramagnetic resonance of the Mn2+ ions have been observed at liquid helium temperature in a strong magnetic field. The effect was recorded by monitoring the submillimeter radiation induced photoconductivity in a swept magnetic field. An increase in the resistivity associated with EPR of the Mn2+ ions is interpreted in terms of the spin- dependent scattering of electrons on magnetic impurities, the spins of which are selectively depolarised by means of paramagnetic resonance. Some additional effects influencing the experiments are also discussed.  相似文献   

15.
This paper investigates the structure and surface characteristics, and electrical properties of the polycrystalline silicon-germanium (poly-Si1−xGex) alloy thin films, deposited by vertical reduced pressure CVD (RPCVD) in the temperature range between 500 and 750 °C and a total pressure of 5 or 10 Torr. The samples exhibited a very uniform good quality films formation, with smooth surface with rms roughness as low as 7 nm for all temperature range, Ge mole fraction up to 32% (at 600 °C), textures of 〈2 2 0〉 preferred orientation at lower temperatures and strong 〈1 1 1〉 at 750 °C, for both 5 and 10 Torr deposition pressures. The 31P+ and 11B+ doped poly-Si1−xGex films exhibited always lower electrical resistivity values in comparison to similar poly-Si films, regardless of the employed anneal temperature or implantat dose. The results indicated also that poly-Si1−xGex films require much lower temperature and ion implant dose than poly-Si to achieve the same film resistivity. These characteristics indicate a high quality of obtained poly-Si1−xGex films, suitable as a gate electrode material for submicron CMOS devices.  相似文献   

16.
CdSexTe1−x nanocrystals (x=0.25, 0.40, 0.50, 0.60 and 0.75) were synthesized using thioglycerol as a stabilizing agent. The composition of the CdSexTe1−x nanocrystals was precisely controlled by tuning the precursor (Se/Te) ratio. The structural, morphological and optical properties of the nanocrystals were analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), diffused reflectance spectroscopy (DRS) and photoluminescence (PL) measurements. It is found that the Se/Te ratio significantly affects the properties of the resultant CdSexTe1−x nanocrystals. XRD pattern of the CdSexTe1−x nanocrystals revealed cubic, hexagonal and mixed phases depending on the ratio of Se:Te. Surface morphology of the CdSexTe1−x nanocrystals showed nanoclusters of sizes ∼50 nm, with the adjacent cluster interlinking each other. DRS revealed the size dependence band gap energy prevailing in the CdSexTe1−x nanocrystals from 1.52 to 2.66 eV due to the optical bowing effect. PL measurements exhibited band edge emission in the visible spectral region, and are red shifted with increase in Se concentration. The facile route employed in the present work to synthesis the CdSexTe1−x nanocrystals in an aqueous medium is simple and controllable, and the strategy presented will be handy in preparing diverse semiconducting nanocrystals.  相似文献   

17.
The infrared lattice-vibration reflection spectra of Cd1-xHgxTe (0?x?0.8) solid solution were measured. For the composition x from 0.1 to 0.6 on the top of the CdTe-like band one can observe considerable fine structure. To account for its nature the short-range clustering of the cations (Cd, Hg) around the anions (Te) characterized by parameter β was supposed. A good fit of the calculated and measured reflectively spectra was obtained provided the clustering parameter β = 0.6.  相似文献   

18.
We report ab-initio calculations of the structural, electronic, magnetic and optical properties of the alloy Cd1-xMnxTe as a function of the Mn concentration ‘x’. Ab-initio calculations are based on the density functional theory (DFT) within the generalized gradient approximation (GGA). The calculated lattice constants of the Cd1-xMnxTe alloys exhibit Vegard's law downward bowing parameter. For the minority spin channel the Fermi level shifts toward higher energy with the value of ‘x’ in Cd1-xMnxTe. The spin-exchange splitting energy Δx(d) increases with increasing ‘x’ in Cd1-xMnxTe and the values of p-d exchange splitting energy Δx(pd) of Cd1-xMnxTe show that the effective potential for the minority spin is more attractive than that for the majority spin. The values of exchange constants N0α and N0β obtained for Cd1-xMnxTe are in agreement with the reported data. The magnetic moment per Mn atom reduces from its free space charge value of 5μB to around 4μB due to p-d hybridization and this results into an appearance of small local magnetic moments on the non-magnetic Cd and Te sites. The absorption threshold shifts toward higher energy and the static refractive index decreases with the increasing value of ‘x’ in Cd1-xMnxTe.  相似文献   

19.
We report on dynamics of excitons in CdxZn1−xTe/ZnTe quantum dots (QDs) and present information of excitonic transport and recombination. Due to different growth methods, samples with different QD's densities were obtained. Time-resolved measurements reveal three decay mechanisms: (i) radiative recombination of excitons in the individual QDs; (ii) thermally activated escape of excitons and (iii) escape due to tunneling (hopping). In the high QD-density samples the hopping (rHB=2700 ns−1) is two orders of magnitude more efficient than in the low QD-density samples (rHB=33 ns−1). Radiative recombination rates are similar in both types of samples, rR=1-1.3 ns−1. Due to the good radiative to nonradiative recombination ratio, the low-density QDs can be a potential source of entangled photon pairs.  相似文献   

20.
Cd1−xZnxTe is a key material for fabrication of high-energy radiation detectors and optical devices. Conventionally it is fabricated using single crystal growth techniques. The method adopted here is the deposition of elemental multilayer followed by thermal annealing in vacuum. The multilayer structure was annealed at different temperatures using one to five repetitions of Cd-Zn-Te sequence. X-ray diffraction pattern for the multilayer with five repetitions revealed that annealing at 475 °C yielded single-phase material compared to other annealing conditions. EDX spectroscopy was carried out to study the corresponding compositions. Photoluminescence properties and change of resistance of the multilayer under illumination were also studied. The resistivity of the best sample was found to be a few hundreds of Ω cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号