首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly oriented silicon nanowire (SiNW) layer was fabricated by etching Si substrate in HF/(AgNO3 + Na2S2O8) solution at 50 °C. The morphology and the photoluminescence (PL) of the etched layer as a function of Na2S2O8 concentration were studied. The SiNW layers formed on silicon were investigated by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). It was demonstrated that the morphology of the etched layers depends on the Na2S2O8 concentration. Room-temperature photoluminescence (PL) from etched layer was observed. It was found that the utilisation of Na2S2O8 decreases PL peak intensity. Finally, a discussion on the formation process of the silicon nanowires is presented.  相似文献   

2.
Pb0.97La0.02(Zr0.85Sn0.13Ti0.02)O3 (PLZST 2/85/13/2) antiferroelectric thin films were deposited on Pt(111)/Ti/SiO2/Si and LaNiO3(LNO)/SiO2/Si substrates through a modified sol-gel process. The phase structure and microstructure of PLZST 2/85/13/2 antiferroelectric thin films were analysed by x-ray diffraction (XRD), scanning electron microcopy (SEM) and field-emission SEM (FE-SEM). The antiferroelectric nature of the PLZST 2/85/13/2 thin films on two electrodes was demonstrated by the C-V (capacitance-voltage) and P-E (polarization-electric field) measurement. The maximum polarizations for PLZST 2/85/13/2 films on Pt and LNO electrodes were 42 and 18 μC/cm2, respectively. The temperature dependence of the dielectric property of the PLZST 2/85/13/2 films was measured under different dc electric fields. Also, the phase transformation of the PLZST 2/85/13/2 films was studied in detail as a function of temperature and dc electric field.  相似文献   

3.
It was demonstrated that the etching in HF-based aqueous solution containing AgNO3 and Na2S2O8 as oxidizing agents or by Au-assisted electroless etching in HF/H2O2 solution at 50 °C yields films composed of aligned Si nanowire (SiNW). SiNW of diameters ∼10 nm were formed. The morphology and the photoluminescence (PL) of the etched layer as a function of etching solution composition were studied. The SiNW layers formed on silicon were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and photoluminescence. It was demonstrated that the morphology and the photoluminescence of the etched layers strongly depends on the type of etching solution. Finally, a discussion on the formation process of the silicon nanowires is presented.  相似文献   

4.
A novel and facile method for effective immobilization of Ru(bpy)32+ within titanate nanotubes (TiNTs) and its application as a sensitive solid-state electrochemiluminescence (ECL) sensor material was studied. The process involved the formation of Ru(bpy)32+-titanate nanotube nanocomposite (Ru-TiNTs) via electrostatic interactions by mixing TiNTs and Ru(bpy)3(ClO4)2 in aqueous medium. Then Ru-TiNTs were attached to the surface of a Pt electrode to form an ECL sensor. Characterization of Ru(bpy)32+-titanate nanotube nanocomposite was accomplished by transmission electron microscopy, X-ray photoelectron spectrum, and field emission scanning electron microscope. The electrochemistry and ECL behavior of Ru(bpy)32+ immobilized on TiNTs were studied with tripropylamine as a coreactant. As-prepared Ru-TiNTs exhibited very good stability and Ru(bpy)32+ species contained showed excellent ECL behavior. Therefore, the as-prepared Ru(bpy)32+-titanate nanotube nanocomposite exhibited great promise as new luminescent materials for solid-state ECL detection.  相似文献   

5.
Size-controlled synthesis of pure rutile-phase TiO2 nanorods was carried out by a hydrothermal method using different organic acids as modifiers, and metatitanic acid and concentrated sulfuric acid as raw materials. The synthesized rutile TiO2 nanorods were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of organic acid modifiers on the sizes of rutile TiO2 nanorods were investigated. It was found that the steric effect occurred by the organic modifiers and non-polarity of organic acids were beneficial to the formation of small-sized rutile TiO2 nanorods. The strongly coordinative interaction between the carboxyl (or hydroxyl) group of the modifier and the surface of TiO2 nanoparticles effectively inhibited the crystal growth.  相似文献   

6.
Interaction of aluminium with cerium oxide was studied by photoelectron spectroscopy of Al/CeO2(1 1 1) and CeO2/Al(1 1 1) model systems. It was found in both cases that metallic aluminium was immediately oxidized, CeO2 was partially reduced and a mixed oxide with cerium present as Ce3+ was formed. The compound is probably cerium aluminate CeAlO3 mixed with Al2O3 or Ce2O3. In both cases the intermixing was limited by the diffusion of aluminium into ceria. The excess of deposited material above this limit formed AlOx and CeO2 overlayers on the top of the mixed oxide + aluminate/CeO2 and mixed oxide + aluminate/Al films, respectively.  相似文献   

7.
A mixed oxide consisting of TiO2 as the major phase and CeO2−y (0<y<0.5) as the dopant phase was prepared via the sol-gel reaction of Ti(i-OC3H7)3 in an aqueous solution of Ce(NO3)3. The resulting oxide powders with different CeO2−y contents were all composed of nano-sized spheres. The CeO2−y phase was identified to have retarding effect on the phase transition from anatase TiO2 to rutile TiO2 at calcinations temperature as high as 800 °C, which would otherwise be a thorough conversion. The CeO2−y-TiO2 powders could apparently shift the UV-absorption band of TiO2 toward visible range, and there was an optimal CeO2−y content in association with the maximum absorbance. This effect is interpreted as the existence of an n-type impurity band, due to the substitution of Ti4+ for Ce3+/4+ at the interface between the two oxides, in the gap of TiO2. According to X-ray photoelectron spectroscopy (XPS) investigation, the Ti element mainly existed as the chemical state of Ti4+ and the Ce oxide doping did not affect the peak position of Ti 2p. The Ce 3d spectrum of CeO2−y-doped TiO2 sample basically denotes a mixture of Ce3+/4+ oxidation states giving rise to a myriad of peaks.  相似文献   

8.
Biaxially textured YBa2Cu3O7−x (YBCO) films were grown on inclined-substrate-deposited (ISD) MgO-textured metal substrates by pulsed laser deposition. CeO2 was deposited as a buffer layer prior to YBCO growth. CeO2 layers of different thickness were prepared to evaluate the thickness dependence of the YBCO films. The biaxial alignment features of the films were examined by X-ray diffraction 2θ-scans, pole-figure, ?-scans and rocking curves of Ω angles. The significant influence of the CeO2 thickness on the structure and properties of the YBCO films were demonstrated and the optimal thickness was found to be about 10 nm. High values of Tc = 91 K and Jc = 5.5 × 105 A/cm2 were obtained on YBCO films with optimal CeO2 thickness at 77 K in zero field. The possible mechanisms responsible for the dependence of the structure and the properties of the YBCO films on the thickness of the CeO2 buffer layers are discussed.  相似文献   

9.
VPO catalysts were prepared on oxidized and unoxidized activated carbons differing in initial porous structure. Carbons were oxidized under relatively soft (30% H2O2, 200 °C) and hard (50% H2O2, 350 °C) conditions. Carbon modification was carried out hydrothermally in a traditional autoclave (HTT) or a microwave reactor (MWT). The synthesis was also carried out under hydrothermal (HTS or MWS) conditions. V2O5 and NH4VO3 were used as precursors. The samples are characterized by diversified porous structure at SBET = 732-1617 m2/g and Vpor = 0.44-0.90 cm3/g, as well as various degree of VPO crystallinity. Possibility of preparation of the VPO catalysts under ecologically appropriate conditions, i.e. in aqueous solutions, was shown.  相似文献   

10.
The mechanism of metal-assisted electroless etching of silicon in HF-oxidizing agent-H2O etching system as a function of oxidizing agent concentration was studied. Three types of oxidizing agent were experimented namely Na2S2O8, K2Cr2O7 and KMnO4. Their concentrations were varied from 0.05 M to 0.3 M. The layers formed on silicon were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive X-ray (EDX). It is shown that an insoluble solid-phase film (K2SiF6) form on silicon surface when concentration of K2Cr2O7 or KMnO4 increases in chemical solutions. On other hand, when Na2S2O8 concentration increases, the surface roughness decreases without any chemical complex formation.  相似文献   

11.
The feasibility of MoS2 layered compound as a substrate for GaN growth was investigated. GaN films were successfully grown on MoS2 by plasma-enhanced molecular beam epitaxy and the crystal quality of GaN on MoS2 was compared with that on Al2O3. For GaN grown on MoS2 substrate, it was found that the surface flatness observed by atomic force microscopy, stress in the film measured by Raman spectroscopy, optical properties measured by photoluminescence spectroscopy, and threading dislocation density observed by transmission electron microscopy show superior properties compared with that grown on Al2O3. These results suggest the layered compound such as MoS2, which has no dangling bonds on the surface and has lattice mismatching of 0.9% to GaN, has high potential for a substrate of GaN growth. Received: 1 March 1999 / Accepted: 8 March 1999 / Published online: 26 May 1999  相似文献   

12.
Influence of ZrO2 in HfO2 on the reflectance of HfO2/SiO2 multilayer at 248 nm was investigated. Two kinds of HfO2 with different ZrO2 content were chosen as high refractive index material and the same kind of SiO2 as low refractive index material to prepare the mirrors by electron-beam evaporation. The impurities in two kinds of HfO2 starting coating materials and in their corresponding single layer thin films were determined through glow discharge mass spectrum (GDMS) technology and secondary ion mass spectrometry (SIMS) equipment, respectively. It showed that between the two kinds of HfO2, either the bulk materials or their corresponding films, the difference of ZrO2 was much larger than that of the other impurities such as Ti and Fe. It is the Zr element that affects the property of thin films. Both in theoretical and in experimental, the mirror prepared with the HfO2 starting material containing more Zr content has a lower reflectance. Because the extinction coefficient of zirconia is relatively high in UV region, it can be treated as one kind of absorbing defects to influence the optical property of the mirrors.  相似文献   

13.
In this study, Al2O3/ZrO2 composite coatings were prepared on Zr substrates by micro-arc oxidation (MAO) in the NaAlO2-containing electrolytes, and the effect of NaAlO2 concentration on the microstructure, bond strength, microhardness and corrosion resistance of coatings was systematically investigated. The study reveals that the adequate NaAlO2 in the electrolyte (>0.2 M) is essential to the formation of needle-like α-Al2O3 in the coatings, and the amount of α-Al2O3 rises with the increase of the NaAlO2 concentration. m-ZrO2 and t-ZrO2 are present in all of the coatings, but their relative amount largely depends on the amount of Al2O3. It is also found that as the NaAlO2 concentration increases from 0.2 to 0.3 M, the coating becomes denser and thicker, and its bond strength, maximum microhardness and corrosion resistance increases as well. The coating formed at 0.3 M NaAlO2 demonstrates the highest bond strength of 52 MPa, the maximum microhardness of 1600 Hv0.2N and the superior corrosion resistance. However, the overhigh concentration of NaAlO2 (0.35 M) is found harmful to the coating's microstructure and properties.  相似文献   

14.
Molybdenum oxide (MoO3) thin films were deposited by electron beam evaporation. The chemical composition, microstructure, optical and electrical properties of MoO3 thin films depend on the annealing temperature and ambient atmosphere. X-ray diffraction (XRD) shows that crystalline MoO3 films can be obtained at various post-annealing temperatures from 200 to 500 °C in N2 and O2. X-ray photoelectron spectroscopy (XPS) results reveal that the O-1s emission peak was shifted slightly toward lower binding energies as the annealing temperature in N2 was increased. The oxygen vacancies and conductivity of MoO3 film increased with the annealing temperature. However, when the MoO3 films were annealed in an atmosphere of O2, the optical transmission, the O/Mo ratio and the photon energy increased with the annealing temperature. The results differ from those for films annealed in a N2 atmosphere.  相似文献   

15.
The surface structure of the alkali-leached single-phase Ni3Al powder was investigated by X-ray diffraction, BET (Brunauer-Emmett-Teller) surface area analysis, electron microscopy, X-ray photoelectron spectroscopy, and temperature-programmed reduction. It was found that fine Ni particles of several nm in diameter were formed on the outer surface layer of the Ni3Al powder after the alkali leaching process. The surface of the Ni particles was covered with a thin layer of Ni oxides and hydroxide, Ni2O3, NiO and Ni(OH)2, and these Ni oxides and hydroxide can be easily reduced by hydrogen to the metallic nickel that is catalytically active. The inside of the Ni3Al powder remained as the original Ni3Al ordered structure after alkali leaching. Having heat resistant properties, the Ni3Al phase can serve as a support of the fine Ni particles and provide the structural and thermal stabilities to the fine Ni particles.  相似文献   

16.
Nitrogen-doped TiO2 (N-TiO2) nanoparticles have been successfully prepared via a direct and simple hydrothermal reaction of a commercial Degussa P25 with triethanol amine as solvent and nitrogen source. As-prepared N-TiO2 was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible light (UV-vis) absorption spectra, electron probe microanalysis (EPMA) and X-ray photoelectron spectroscopy (XPS) techniques. The results confirm that hydrothermal reaction is an effective way to incorporate nitrogen into the TiO2 lattice, especially nitrogen substitute for titanium. The nitrogen concentration in TiO2 can be as high as 21% (molar ratio), which is described as Ti1−yO2−xNx+y (in this paper, x=0.36, y=0.27, i.e., Ti0.73O1.64N0.63). The chemical statuses of N have been assigned to N-Ti-O and O-N-O in the TiO2 lattice as identified by XPS. Photocatalytic degradation of methyl orange has been carried out in both UV-vis (simulated solar light) and the visible region (λ>400 nm). N-TiO2 exhibits higher activity than the Degussa P25 TiO2 photocatalyst, particularly under visible-light irradiation. This study has developed a promising and practical pathway to new nitrogen-doped photocatalysts.  相似文献   

17.
The effect of anions such as Cl, SO42−, and HPO42− on the phase stability of FeOOH (α or γ) during precipitation is investigated. Oxidation of Fe(OH)2·xH2O from FeCl2 solution with high Cl concentration ([Cl]/[Fe]=RCl≥8) or (NH4)2Fe(SO4)2 (FAS) with [HPO42−]/[Fe]=RP≥0.02 yields phase-pure γ-FeOOH. In the medium ranges of RCl and RP, mixed phases of α-FeOOH and γ-FeOOH are obtained. Replacement of OH by Cl with the bridging cations or strongly bonded HPO42− ions in the matrix of the intermediate phase (Fex2+Fey3+(OH)2x+2ynz·xH2O(A)zn, where A is anions such as Cl, SO42−, HPO42−, etc.), promoted the lower density γ-FeOOH. However, the particles are less developed and have poor crystallinity as evidenced from transmission electron microscope and thermogravimetry-differential thermal analysis of the precipitates. Whereas, monophasic, uniformly sized, nano-lath shaped particles with high aspect ratio >10 are obtained when morphology-controlling cation additives such as Pt4+, Pd2+ or Rh3+ are present in FeCl2 (RCl≥8) solution. Preferential adsorption of additives on (0k0) and (h00) planes limits the growth in the perpendicular directions leading to high aspect ratios. The effect of these additives are suppressed by the phosphate ion, a strong complexing ligand, giving rise to fibrous aggregate with the length of individual particles as small as 10-30 nm. While most of the Cl ion is removed from the final precipitates on washing, phosphate remained as HPO42− as evidenced from IR absorption spectra. Maghemite obtained by dehydroxylating γ-FeOOH contains randomly distributed micropores bringing in the relaxation effects of spins on the surface atoms as deciphered from Mössbauer spectroscopy. This leads to the low σs (44-48 emu/g) and Hc (120-130 Oe) for γ-Fe2O3−δ particles. Whereas nearly pore-free single crystalline particles obtained by reduction followed by reoxidation has high value of σs (73 emu/g) and Hc (320 Oe), which decreases to 30 emu/g and 75 Oe, respectively, for nanoparticles obtained from phosphate stabilized lepidocrocite. The mobility of iron ions and counter mobility of vacancies during the topotactic transformation of γ-FeOOH to magnetite to γ-Fe2O3−δ renders the particles pore-free.  相似文献   

18.
Four kinds of Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 content have been prepared on BK7 substrates by electron-beam evaporation method. Structural properties and surface morphology of thin films were investigated by X-ray diffraction (XRD) spectra and scanning probe microscope. Laser induced damage threshold (LIDT) was determined. It was found that crystalline phase and microstructure of YSZ thin films was dependent on Y2O3 molar content. YSZ thin films changed from monoclinic phase to high temperature phase (tetragonal and cubic) with the increase of Y2O3 content. The LIDT of stabilized thin film is more than that of unstabilized thin films. The reason is that ZrO2 material undergoes phase transition during the course of e-beam evaporation resulting in more numbers of defects compared to that of YSZ thin films. These defects act as absorptive center and the original breakdown points.  相似文献   

19.
Pentacene thin-film transistors (TFTs) were fabricated on thermally grown SiO2 gate insulator under the conditions of various pre-cleaning treatments. Initial nucleation and growth of the material films on treated substrates were observed by atomic force microscope. The performance of fabricated TFT devices with different surface cleaning approaches was found to be highly related to the initial film morphologies. In contrast to the three-dimensional island-like growth mode on SiO2 under an organic cleaning process, a layer-by-layer initial growth occurred on the SiO2 insulator cleaned with ammonia solution, which was believed to be the origination of the excellent electrical properties of the TFT device. Field effect mobility of the TFT device could achieve as high as 1.0 cm2/Vs on the bared SiO2/Si substrate and the on/off ratio was over 106.  相似文献   

20.
Hall effect, DLTS and low-temperature photoluminescence measurements were used to study the effect of dimeric (As2) vs tetrameric (As4) vapour species on the electrical and optical properties of nominally undoped and of Ge-doped GaAs layers grown by molecular beam epitaxy (MBE). The arsenic molecular beam was generated from separate As2 and As4 sources, respectively, and from a single source providing an adjustable As2/As4 flux ratio. The occurence of the previously described defect related bound exciton lines in the luminescence spectra at 1.504–1.511 eV was found to be directly correlated with the presence of three deep states (M1, M3, M4) which are characteristic of MBE grown GaAs. The intensity of the extra luminescence lines and simultaneously the concentration of the deep electron traps can be reduced substantially simply by decreasing the As4/As2 flux ratio. The incorporation of defect related centers as well as of amphoteric dopants like Ge strongly depends on the surface chemistry involved. Therefore, a considerably lower autocompensation ratio in Ge-dopedn-GaAs is obtained with As2 molecular beam species which provide a higher steady-state arsenic surface population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号