首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D. Dong 《Applied Surface Science》2009,255(15):7051-7055
Dispersible SiO2 nanoparticles were co-deposited with electroless Ni-P coating onto AISI-1045 steel substrates in the absence of any surfactants in plating bath. The resulting Ni-P/nano-SiO2 composite coatings were heat-treated for 1 h at 200 °C, 400 °C, and 600 °C, respectively. The hardness and wear resistance of the heat-treated composite coatings were measured. Moreover, the structural changes of the composite coatings before and after heat treatment were investigated by means of X-ray diffraction (XRD), while their elemental composition and morphology were analyzed using an energy dispersive spectrometer (EDS) and a scanning electron microscope (SEM). Results show that co-deposited SiO2 particles contributed to increase the hardness and wear resistance of electroless Ni-P coating, and the composite coating heat-treated at about 400 °C had the maximum hardness and wear resistance.  相似文献   

2.
In order to improve the high-temperature wear resistance of austenitic stainless steel, a wear resistant composite coating reinforced with hard (Cr,Fe)7C3 carbide and toughened by ductile γ-(Ni,Fe)/(Cr,Fe)7C3 eutectic matrix was fabricated by a novel central hollow laser cladding technique. The constituent phases and microstructure as well as high-temperature tribological behaviors of the Ni-based coating were investigated, respectively, and the corresponding wear mechanisms were discussed. It has been found that the composite coating exhibits superior wear resistance than substrate either at ambient or high temperatures. The coating shows better sliding wear resistance at 600 °C than 300 °C owing to high-temperature stability of the reinforced carbide and polishing effect as well as formation of continuous lubricious films, which implied it has large potential industrial applications at relatively higher temperatures.  相似文献   

3.
Using double glow plasma alloying technique, a multi-elements alloyed layer containing elements of Cr, Ni, Mo and Co was formed on the surface of pure iron. After undergoing suitable aging treatment followed solid solution treatment, the formed alloying layer keeps a good combination of corrosion resistance and wear resistance. The relationship between the process parameters of heat treatments and the properties of the formed Cr-Ni-Mo-Co alloying layer, such as the chemical composition, hardness, corrosion resistance and wear resistance, was investigated in this study. It was revealed that the formed alloying layer exhibits a better behavior than that of 304 stainless steel and pure iron by employing a suitable heat treatment system. The temperature employed in solid solution treatment is 1453 K (1180 °C) followed by water quenching and the aging temperature is 813 K (540 °C) followed by water cooling.  相似文献   

4.
The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can use the conventional hydrodynamic lubrication. For further reduction of shaft vibrations one can use the active lubrication action, which is based on injecting pressurized oil into the bearing gap through orifices machined in the bearing sliding surface. The design and efficiency of some linear (PD, PI and PID) and a non-linear controller, applied to a tilting-pad journal bearing, are analysed and discussed. Important conclusions about the application of integral controllers, responsible for changing the rotor-bearing equilibrium position and consequently the “passive” oil film damping coefficients, are achieved. Numerical results show an effective vibration reduction of unbalance response of a rigid rotor, where the PD and the non-linear P controllers show better performance for the frequency range of study (0-80 Hz). The feasibility of eliminating rotor-bearing instabilities (phenomena of whirl) by using active lubrication is also investigated, illustrating clearly one of its most promising applications.  相似文献   

5.
Low cost arc spraying and cored wires were used to deposit composite coatings consisting of TiB2 and TiB2/Al2O3 hard particles in a Ni(Cr) and stainless steel 304L matrix. Four coatings were prepared namely Ni(Cr)-TiB2, Ni(Cr)-TiB2/Al2O3, 304L-TiB2 and 304L-TiB2/Al2O3. The microstructural characteristics of powders and coatings were observed by scanning electron microscopy (SEM). Phase compositions of powders were analyzed by X-ray diffraction (XRD). Although all the analyzed coatings exhibited similar lamella structure, remarkable differences not only in the morphology of hard phase and matrix but also in the size and distribution of hard phases were observed from one coating to another. Tribological behavior of the coatings was analyzed in room temperature dry sliding wear tests (block-on-ring configuration), under 75 N at low velocity (0.5 m/s). The coatings showed far high wear resistance than low carbon steel substrate under same conditions examined. Wear loss of 304L-TiB2 and Ni(Cr)-TiB2 coatings were lower nearly 15 times than that of steel substrate. TiB2 hard phases in coatings bonded well with metal matrix contributed to high wear resistance.  相似文献   

6.
Influence of heat treatment regime on adhesion and wear resistance of Ni-P electroless coating on AZ91 magnesium alloy is investigated in this work. The pretreated substrate was plated using a bath containing nickel sulphate, sodium hypophosphite and sodium acetate as main constituents. The coated samples were heat treated at 400-450 °C for 1-8 h. Adhesion of coating was estimated from the scratch test with an initial load of 8.80 N. Wear resistance was studied using the pin-on-disc method. It was found that there is no significant dependence of the coating wear resistance on heat treatment regime, as the formation of Al-Ni intermetallic sub-layers that reduce coating adhesion is limited to regions where Al17Mg12 phase is present in the substrate. Moreover, the coating shows good sliding properties due to the formation of oxide glazes in the wear track.  相似文献   

7.
Fe-Ni-W alloys with 18 wt%, 35 wt% and 55 wt% tungsten have been obtained by electrodeposition from an ammoniacal citrate bath. The deposits are smooth, of nice appearance, and adhere well to iron and steel. The morphology and structure of Fe-Ni-W alloys were studied by SEM and XRD, respectively. The structure of the as-plated deposits changed from crystalline to amorphous with increasing tungsten content. The amorphous structure crystallized under heat treatment condition. The wear and corrosion resistance of the deposits were tested by MPX-2000 wear-tear equipment and neutral salt spray test (NSS), respectively. The alloys with 55 wt% tungsten, after heat treatment at proper temperatures, appear to have good wear resistance and hardness. The alloys with 18 wt% tungsten are very corrosion-resistant.  相似文献   

8.
The coatings with different phosphorus contents were obtained by varying the concentration of H3PO3 in the electroplating bath. With the increase of phosphorus content, the structure of the Ni-P electrodeposited coatings transformed from microcrystalline to a mixture of nanocrystalline and amorphous phases, then to amorphous phase. A high hardness value of 710 HV0.1 of as-deposited Ni-P coating was obtained at 8.3 at.% phosphorus content, and high wear resistance was accordingly achieved. The refined nanocrystalline grains with average size of about 7 nm were found to be responsible for the high hardness and improved wear resistance of the as-deposited Ni-P electrodeposited coating.  相似文献   

9.
A high wear-resistant gradient coating made of Ni/Co-based alloys on the surface of a Cu alloy substrate was synthesized using a YAG laser induced in situ reaction method. The coating consists of three layers: the first is a Ni-based alloy layer, the second and third are Co-based alloy layers. The microhardness increases gradually from 98 HV in the Cu alloy substrate to the highest level of 876 HV in the third layer. The main phase of the Co-based alloy layer is CoCr2(Ni,O)4, coexisting with the Fe13Mo2B5, Cr(Co(Mo, and FeCr0.29Ni0.16C0.06 phases. Wear tests indicate that the gradient coating has good bond strength and wear properties with a wear coefficient of 0.31 (0.50 for the Cu alloy substrate). Also, the wear loss of the coating is only 0.01 g after it has been abraded for 60 min, which is only one fifth of that of the Cu alloy of the crystallizer. Wear tests of the gradient coating reveal good adhesive friction and wear properties when sliding against steel under dry conditions. This novel technique may have good application to make an advanced coating on the surface of the Cu alloy crystallizer in a continuous casting process.  相似文献   

10.
A modified activation process was developed for electroless Ni-P coating preparation of conductive mica powder. The electroless Ni-P coating process was modified by replacing the conventional sensitization and activation steps only using activation step with a Pd(II)-APTHS activator, which is a complex of Pd(II) ion with a derivate γ-aminopropyltrihydroxysilane (APTHS) from the hydrolysis of γ-aminopropyltriethoxysilane (APTES). The activated reaction progress and resulted Ni-P coating were characterized by XPS, SEM/EDX and TEM. Electroless nickel deposition was successfully initiated by this activation process. This activation process is very simple, and the obtained Ni-P deposits have the advantages of uniformity, continuity and densification. The average specific resistivity for the Ni-P coated mica powder was 4.85 × 10−2 Ω cm.  相似文献   

11.
In current research, low carbon steel plates were coated by Ni-P electroless method. The effect of adding different concentrations (ranging from 0.01 g/l to 0.5 g/l) of TiC nano-sized particles to the plating bath on deposition rate, surface morphology and corrosion behavior of Ni-P-TiC composite coatings were investigated. The surface morphology and the relevant structure were evaluated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Corrosion behavior of the coated steel was evaluated by electrochemical impedance spectroscopy (EIS) and polarization techniques. The results showed that addition of TiC nano-particles to Ni-P electroless bath not only changes the surface morphology of Ni-P coating, but also improves corrosion resistance of the steel in comparison with TiC free Ni-P electroless coating. In addition, the deposition rate of coating was also affected by incorporation of TiC particles. It was also found that improvement in corrosion resistance largely depends on the phosphorous and TiC concentrations on the coatings.  相似文献   

12.
Ti incorporated amorphous carbon (a-C) films with variant Ti contents were prepared by the unbalanced magnetron sputtering process. Scanning electron microscopy, ultraviolet Raman spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy were used to characterize the microstructure of a-C films. The hardness and lubricated tribological properties were assessed using nanoindentation and ball-on-disk tribometer. As the Ti content in a-C films increases from 0 to 15.2 at.%, the sp3 volume fraction, the internal stress and the hardness of the films decreases gradually, while the disorder of sp2 bond increases. The electrochemical tests reveal that the a-C films with lower than 1.5 at.% Ti possess good corrosion resistance in Hanks’ solution, while the a-C film with 15.2 at.% Ti is susceptible to crevice corrosion. The reduced friction of the a-C films is due to the sp2 bonded film surface and boundary lubrication of the Hanks’ solution. The a-C film with 3.1 at.% Ti exhibits the best wear resistance in Hanks’ solution among the studied films.  相似文献   

13.
Two processes for the fabrication of polycrystalline CoSi2 thin films based on the codeposition of Co and Si by sputtering were studied and compared. The first process involved “annealing after deposition”, where Co and Si are codeposited at ambient temperature and then crystallized by annealing. This process yielded randomly oriented plate-like CoSi2 grains with a grain size that is governed by the nanostructure of the as-deposited film. Polycrystalline CoSi2 thin films were obtained at a process temperature of 170 °C, which was much lower than the annealing temperature of 500 °C needed for Co/Si bilayers. The second process involved “heating during deposition”, where Co and Si are codeposited on heated substrates. This process yielded CoSi2 grains with a columnar structure, and the grain size and degree of (1 1 1) orientation are temperature dependent. The sheet resistance of the resulting films was determined by the preparation temperature regardless of the deposition process used, i.e. “annealing after deposition” or “heating during deposition”. Temperatures of 500 °C and higher were needed to achieve CoSi2 resistivity of 40 μΩ cm or lower for both processes.  相似文献   

14.
Evolution of tribological properties of electroless Ni-P and Ni-P-Al2O3 coating on an Al-10Si-0.3Mg casting alloy during heat treatment is investigated in this work. The pre-treated substrate was plated using a bath containing nickel hypophosphite, nickel lactate and lactic acid. For preparation of fiber-reinforced coating Al2O3 Saffil fibers pre-treated in demineralised water were used. The coated samples were heat treated at 400-550 °C/1-8 h. Tribological properties were studied using the pin-on-disc method. It is found that the best coating performance is obtained using optimal heat treatment regime (400 °C/1 h). Annealing at higher temperatures (450 °C and above) leads to the formation of intermetallic compounds that reduce the coating wear resistance. The reason is that the intermetallic phases adversely affect the coating adherence to the substrate. The analysis of wear tracks proves that abrasion is major wear mechanism, however due to the formed intermetallic sub-layers, partial coating delamination may occur during the pin-on-disc test on the samples annealed at 450 °C and above. It was found that fiber reinforcement reduces this scaling and increases wear resistance of coatings as compared to the non-reinforced Ni-P coatings.  相似文献   

15.
Three kinds of laser boronizing composite coatings were in situ synthesized on Ti substrate by using powders of B, BN and B4C as starting materials. Microstructures of the laser boronizing composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM); and their worn surface morphologies were also observed by using SEM. Moreover, the friction and wear behavior of the boronizing composite coatings under dry sliding condition were evaluated using a UMT-2MT friction and wear tester. It was found that all the three types of laser boronizing composite coatings had higher microhardness and better wear resistance than pure Ti substrate; and their microstructure and wear resistance varied with varying pre-placed powders of B, BN, and B4C. Under the same dry sliding test conditions, the wear resistance of the three kinds of laser boronizing composite coatings, i.e., sample 1 prepared from pre-placed B, sample 2 obtained from pre-placed BN, and sample 3 fabricated from pre-placed B4C, is ranked in an order of sample 1 > sample 2 > sample 3, which, surprisingly, well conforms to their order of hardness and friction coefficients.  相似文献   

16.
High corrosion resistance Cu/Ni-P coatings were electrodeposited on AZ91D magnesium alloy via suitable pretreatments, such as one-step acid pickling-activation, once zinc immersion and environment-friendly electroplated copper as the protective under-layer, which made Ni-P deposit on AZ91D Mg alloy in acid plating baths successfully. The pH value and current density for Ni-P electrodeposition were optimized to obtain high corrosion resistance. With increasing the phosphorous content of the Ni-P coatings, the deposits were found to gradually transform to amorphous structure and the corrosion resistance increased synchronously. The anticorrosion ability of AZ91D Mg alloy was greatly improved by the amorphous Ni-P deposits, which was investigated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The corrosion current density (Icorr) of the coated Mg alloy substrate is about two orders of magnitude less than that of the uncoated.  相似文献   

17.
The effect of copper ion implantation on the antibacterial activity, wear performance and corrosion resistance of medical metals including 317 L of stainless steels, pure titanium, and Ti-Al-Nb alloy was studied in this work. The specimens were implanted with copper ions using a MEVVA source ion implanter with ion doses ranging from 0.5 × 1017 to 4 × 1017 ions/cm2 at an energy of 80 keV. The antibacterial effect, wear rate, and inflexion potential were measured as a function of ion dose. The results obtained indicate that copper ion implantation improves the antibacterial effect and wear behaviour for all the three medical materials studied. However, corrosion resistance decreases after ion implantation of copper. Experimental results indicate that the antibacterial property and corrosion resistance should be balanced for medical titanium materials. The marked deteriorated corrosion resistance of 317 L suggests that copper implantation may not be an effective method of improving its antibacterial activity.  相似文献   

18.
Two types of PEO coatings, one consisting of magnesium oxide (MgO) and the other comprising zirconium oxide (ZrO2) as the main phase composition were produced on AM50 magnesium alloy from alkaline and acidic electrolytes, respectively. The ZrO2 coating was found to be spongy and thicker with a higher roughness, whilst the relatively more compact MgO coating was having contrasting features. In the dry sliding oscillating wear tests under two different loads viz., 2 N and 5 N, the ZrO2 coating exhibited a very poor wear resistance. The MgO coating showed an excellent resistance to sliding wear under 2 N load; however, the load bearing capacity of the coating was found to be insufficient to resist the wear damage under 5 N load. The higher specific wear rates of the MgO coating under 5 N load and that of the ZrO2 coating under 2 N and 5 N loads were attributed to the poor load bearing capacity and a three-body-abrasive wear mechanism.  相似文献   

19.
Wear resistance of reactive plasma sprayed TiB2-TiC0.3N0.7 based composite coatings and the as-sprayed coating with laser surface treatment was investigated using plate-on-plate tests. Wear tests were performed at different normal loads and sliding speeds under dry sliding conditions in air. The surface morphologies of counterparts against as-sprayed and laser remelted coatings were investigated. The microstructure and chemical composition of wear debris and coatings were studied using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), respectively. The results show that the wear resistance of the laser remelted coating is improved significantly due to their increased microhardness and reduced flaws. The primary wear mechanism of the remelted coating is oxidation wear and its minor wear mechanisms are grain abrasion and fatigue failure during the course of wear test. In contrast, the primary wear mechanism of the as-sprayed coating is grain abrasion at the low sliding speed (370 rpm) and fatigue failure at the high sliding speed (549 rpm). The oxidation wear mechanism is a minor contributor for the as-sprayed coating.  相似文献   

20.
Broad-beam laser cladding of Al-Cu alloy coating on AZ91HP magnesium alloy   总被引:3,自引:0,他引:3  
The resistance to wear and corrosion of AZ91HP Mg alloy was improved by laser cladding Al-Cu alloy. It was found that the clad layer was characterized by AlCu4 and Mg17Al12 grains embedded in a AlMg matrix. The bonding zone exhibited a white-light planar crystal band with thickness of 10-13 μm. The heat-affected zone formed a eutectic structure due to the Mg diffusion. The microhardness and wear resistance of the coating were improved due to the formation of the hard phases AlCu4 and Mg17Al12. Owing to the formation of dense Al2O3 oxide film, the coating exhibited better corrosion resistance in 3.5 wt.% NaCl solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号