首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study evaluated the effects of particle temperature and substrate material on critical velocity and deposition efficiency in kinetic spraying. A wide range of process gas pressures and temperatures was used in this experiment to vary both particle velocity and temperature. A bronze (Cu-Sn alloy) feedstock was deposited onto aluminum, mild steel and bronze substrates. The experimental results showed that the critical velocity was strongly dependent on the combinations of particle/substrate and particle temperature. The decreasing critical velocity could be obtained at the same particle velocity, due to an increasing particle temperature. In our experiments, the critical velocity decreased by 50 m/s when the process gas temperature increased by 100 °C. When process conditions are optimized to have good bond strength and deposition efficiency, two critical velocities must be considered; one is that of the particle deposition onto the substrate (Vcr1) and the other is that of particle-particle bonding (Vcr2).  相似文献   

2.
Particle velocity is a very important parameter in kinetic spraying (or cold gas dynamic spraying). It is difficult to measure the velocity of a particle with supersonic speed at low temperature (lower than 500 °C). Thus, in many investigations only estimated values are used for evaluating coating processes. In this paper, the modeling of particle acceleration was reviewed, and the measurement of in-flight particle velocity in a kinetic spraying process was performed. Particle velocity and flux distributions from different process gas temperatures and pressures were investigated. The influences of process gas temperature and pressure on particle velocity were discussed. Characteristic of Al-Si feedstock deposition onto a mild steel substrate was described by comparing coatings structures with the in-flight particle conditions. The deposition behavior showed two critical particle velocities for Al-Si powder deposition onto a substrate and for particle-particle bonding.  相似文献   

3.
张小锋  葛昌纯  李玉杰  郭双全  刘维良 《物理学报》2012,61(2):20207-020207
采用冷动力喷涂法以纯钨和钨-镍-铁合金为原料在铜合金基体上制备了钨涂层和钨-镍-铁涂层. 研究了冷喷涂过程中钨粉粒径、喷涂距离等因素对涂层性能的影响. 用扫描电子显微镜分析了涂层的表面、断面微观结构, 并用原子力显微镜测量了涂层的粗糙度. 此外, 计算了冷喷涂过程中粉末颗粒的实际速度, 并采用有限元分析软件ANSYS/LS-DYNA模拟了冷喷涂过程中颗粒撞击基体时的变形情况.  相似文献   

4.
Zn particles are employed to create different impact conditions, including impact-induced interface melting in cold spraying. The influence of particle impact conditions on the interfacial microstructure evolution, microhardness and the bonding of particles in cold-sprayed Zn coatings are studied. An examination of coating surface morphology provides convincing evidence for melting at particle interfaces. The results reveal that the nanostructured phase was formed at the interface areas between deposited particles in coating resulting from the recrystallization of deformed grains. Melting at interfaces significantly enhances the bonding between the substrate and the coating and between the deposited Zn particles in the coating through the formation of a metallurgical bond. In addition, high driving gas temperature causes the decreasing hardness of deposited Zn coatings. The effects of particle conditions on the impact-induced melting and bonding mechanisms are discussed.  相似文献   

5.
6.
In this study, a systematic examination of the oblique impacting of copper particles in cold spraying was conducted by using the smoothed particle hydrodynamics (SPH) method compared to the Lagrangian method. 3D models were employed owing to the asymmetric characteristic of the oblique impacting. It is found that in the oblique impact, the additional tangential component of particle velocity along the substrate surface could create a tensile force and decrease the total contact area and bonding strength between the particle and the substrate. The simulation results compare fairly well to the experiment results. Meanwhile, the asymmetric deformation can result in the focus of the shear friction on a small contact zone at one side, which may rise the interfacial temperature and thus facilitate the occurrence of the possible shear instability. Therefore, there probably exists an angle range, where the deposition efficiency may be promoted rather than the normal angle. Moreover, the particle deformation behavior simulated by the SPH method is well comparable to that simulated by the Lagrangian method and the experimental results, which indicates the applicability of the SPH method for simulating the impact process in cold spraying besides the previously used Arbitrary Lagrangian Eulerian (ALE) method.  相似文献   

7.
MoSi2-based oxidation protective coatings for SiC-coated carbon/carbon composites were prepared using a supersonic plasma spraying at the power of 40 kW, 45 kW, 50 kW and 55 kW, respectively. Effect of spraying power on the microstructure and bonding strength of MoSi2-based coatings was studied. The results show that coatings become more and more compact and the bonding strength increases when the spraying power increases from 40 kW to 50 kW. At the power of 50 kW, the coatings were dense and the bonding strength reached a maximum value of 14.5 MPa. As the spraying power is of sufficient magnitude, many cracks and pores reappaer in coatings and the bonding strength between coating and substrate also decreases.  相似文献   

8.
In this study, 304 stainless steel coatings were deposited on interstitial-free steel substrate by cold spraying method. The effect of annealing treatment on microstructure, microhardness, ultimate tensile strength and fracture performance of the coatings were studied. The results showed that annealing treatment had made a dominant contribution to heal up the incomplete interfaces between the deposited particles. Both of the microstructure and the mechanical properties have been obviously optimized by annealing treatment. In addition, the coating microhardness decreased from 345 HV0.2 for the as-sprayed coating to 201 HV0.2 for the annealed coating. The coating ultimate tensile strength increased from 65 MPa for the as-sprayed coating to 357 MPa for the annealed coating, which resulted from the increase of the metallurgically bonded areas in the coating induced by annealing treatment. Fracture morphology of the coatings also revealed that annealing treatment changed the fracture character of the cold sprayed 304 stainless steel coating from brittle type to plastic type.  相似文献   

9.
This paper investigates the effect of arc spraying power on the microstructure and mechanical properties of Zn-Al coatings deposited on carbon fiber reinforced epoxy composites (CFRE composites). The bond strength between the Zn-Al coatings and the substrates was tested on a RGD-5 tensile testing machine. The microstructures and phase composition of the as-sprayed coatings were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The results showed that both the melting extent of Zn-Al particles and the bond strength of the coatings were evidently improved by increasing the spraying power. Moreover, the content of crystalline Zn-Al coatings was slightly changed. Observation of fracture surfaces showed that the Zn-Al coatings could bond well with the carbon fiber bundles using 40 kW spraying power.  相似文献   

10.
The critical velocity for particle deposition in cold spraying is a key parameter, which depends not only on the material type, but also the particle temperature and oxidation condition. The dependency of deposition efficiency of cold spray Cu particles on the particle temperature and surface oxidation was examined. The effect of particle surface oxide scales on the interfacial microstructure and adhesive strength of the cold-sprayed Cu coatings was investigated. The results show that the deposition efficiency significantly increases with increasing the gas temperature but decreases with augmenting the oxygen content of the starting powder. The oxide inclusions at the interfaces between the deposited particles inhibit the effective bonding of fresh metals and remarkably lower the bond strength of the deposited Cu coatings on steel.  相似文献   

11.
The ability of cold spray process to retain the feedstock microstructure into coating makes it possible to deposit nanostructured WC-Co coatings. In the present study, the deposition behavior of nanostructured WC-12Co coating was examined through the surface morphology and cross-sectional structure of the deposited single WC-12Co particle impacting on the substrates with different hardness using a nanostructured WC-12Co powder. Substrates included stainless steel, nickel-based self-fluxing alloy coatings with different hardness. It was observed from the top surface and cross-section of individual WC-12Co particles that the penetration leading to particle deposition depends on substrate hardness. When the substrate surface is covered by WC-12Co particles, the hardness of the newly formed substrate, i.e. the coating, increases greatly. The significant increase of the surface hardness leads to the rebounding off of impacting particles and erosion of the deposited particles, which prohibits effective built-up of coating. However, it was found that with spray jet fixed, a deposit with a thickness up to over 700 μm can be built-up. A model involving in substrate hardness transition during deposition is proposed to explain such phenomenon, which can be employed to optimize the conditions to build up a uniform nanostructured WC-12Co coating.  相似文献   

12.
In this study, a comprehensive examination of the deformation behavior of Al particles impacting on Al substrate was conducted by using the Arbitrary Lagrangian Eulerian (ALE) method to clarify the deposition characteristics of Al powder and the effect of surface oxide films in cold spraying. It was found that the deformation behavior of Al particles is different from that of Cu particles under the same impact conditions owing to its lower density and thus less kinetic energy upon impact. The results indicated that a higher velocity was required for Al particles to reach the same compression ratio as that of Cu particles. On the other hand, the numerical results showed that the oxide films at particle surfaces influenced the deformation and bonding condition between the particle and substrate. The inclusions of the crushed oxide films at the interfaces between the depostied particles inhibit the deformation.  相似文献   

13.
Abstract

This study presents the results of light optical and scanning electron microscopy as well as energy dispersive spectroscopy investigation of the Ni-based self-fluxing alloys (NiCrBSi, NiCrWBSi and NiCrBSi + WC) deposited on steel substrates (heat treated carbon steel C45, heat treated low-alloyed steel 42CrMo4 and austenitic stainless steel X6CrNiMo18-10-2) by one-step flame spraying and fusing process. The microstructure of coatings and coating/substrate interface but also the effects of deposition technology on the heat-treated steel substrates which have frequently been used in practice were investigated. The influence of the sample size on the microstructure was also discussed. A proof is given of the change in the structure of coating, coating/substrate interface and substrate due to high fusing temperature, depending on type of steel substrate (and relating thermal properties), coating thickness but also on dimensions of the sample.  相似文献   

14.
Tin bronze (TB) powder was deposited on a stainless steel substrate by cold spraying. Post-deposition heat treatment was conducted in an electrical resistance furnace under nitrogen atmosphere at a temperature of 850 °C for 3 h. The effect of heat treatment on the microstructure and microhardness of cold-sprayed TB coating was investigated. It was found that the as-sprayed TB coating presented a dense microstructure. Heat treatment significantly influenced the microstructure and microhardness of cold-sprayed TB coating. A distinguishable diffusion layer of about 150 μm was formed in the coating near the coating/substrate interface. A compound was precipitated in the diffusion layer. The microhardness in the coating was changed gradually along the coating from the interface to the coating surface after heat treatment. The microhardness in the diffusion layer was high owing to the precipitation of hard phase, while it was much low in other area due to the obvious grain growth during annealing.  相似文献   

15.
A systematic finite element analysis (FEA) on the subsequently incident particles which refer to the particles depositing after the formation of the first layer coating is conducted in this study to clarify the bonding mechanism inside the cold sprayed coating. A simplified particle impact model is proposed and the simulated results based on this model demonstrate that substrate hardness exerts some effects on the deformation behavior of the subsequently incident particles. Hard substrate makes these particles deform intensively but using soft substrate enables them to achieve a slight deformation. At the same time, it is also found that substrate hardness plays its best role only when the formed coating is thin, as the development of the coating, the particle deformation behavior becomes more and more insensitive to the substrate hardness. The multi-particle impact simulation based on Eulerian method is also performed and reaches the same conclusion, confirming the accuracy of the simplified model. Besides, it is also found that when the velocity is increased to a hypervelocity, excessive deformation occurs in the formed coatings due to the impact of the subsequently incident particles.  相似文献   

16.
In this paper, the microstructure, microhardness and adhesive strength of Al-12Si coating produced by cold spraying were investigated. It is found that a thick, dense and well bonded Al-12Si coating could be produced by cold spraying with a relatively large powder through the control of spray conditions. The critical velocity for large Al-12Si particles was lower than that of small Al-12Si particles. The as-deposited Al-12Si coating had the same crystal structure as Al-12Si powder. The localized interface melting occurred resulting from both the adiabatic shearing upon impact and the thermal effect of hot gas. Some fine Si particles precipitated in α-Al matrix because of the thermal effect of hot gas during coating deposition. The dispersed Si particles in Al-12Si coating improved the coating microhardness.  相似文献   

17.
The WC-Co coating obtained by atmospheric plasma spraying (APS) was modified by Cu electrochemical impregnation. The copper has infiltrated into and filled up the pores in WC-Co coating. The tribological properties of the coating against the stainless steel ball as sliding pairs were investigated with a ball-on-disc (BOD) configuration in air at room temperature. The as-prepared samples were characterized by means of optical microscope, scanning electron microscope and X-ray diffraction. It was found that the frictional behavior of the WC-Co coating followed by Cu electrochemical impregnation was superior to that of WC-Co coating. The wear mechanism of the WC-Co coating followed by Cu electrochemical impregnation was microcutting, whilst that of a WC-Co coating was the fatigue wear. The improvement in tribological properties of the WC-Co coating followed by Cu electrochemical impregnation was attributed to the formation of self-lubricating Cu film on the wear surface which induces the transformation of wear mechanism.  相似文献   

18.
Based on large amount of experimental observations, the effects of metal reactivity and oxide films at particle surfaces on coating deposition behavior in cold spraying were presented and discussed. The oxygen contents in as-sprayed Ti, Ti-6Al-4V and Al coatings were higher than those in the corresponding starting powders. The obvious flashing jets outside nozzle exit during deposition of Ti and Ti-6Al-4V were caused by the reaction of the particles with oxygen in the entrained or the adopted air. For Ti and Ti-6Al-4V coatings, their porous structures are predominantly attributed to the surface reactivity (defined as reactivity with oxygen). This surface reaction could be helpful for formation of a metallurgical bonding between the deposited particles. For Al, even though it is more reactive than Ti, the oxide films at Al particle surfaces suppress the surface activity.  相似文献   

19.
In the present study, nanostructured titanium carbonitride (TiCN) coatings were successfully deposited by reactive plasma spraying (RPS) technology using a self-designed gas tunnel mounted on a normal plasma spray torch. The phase composition and microstructure of the TiCN coatings were characterised by XRD, SEM and TEM. The results indicated that the main phase of the coatings was FCC TiC0.2N0.8 with a small amount of Ti3O. The coating that was deposited using 35 kW displayed better microstructure and properties. The coating exhibited a typical nanostructure including 90 nm diamertrical equiaxed grains and 400 nm long columnar grains by TEM images. The SEM observation further revealed that the equiaxed grains in parallel direction to the substrate surface in TEM images were actually the columnar grains perpendicular to the substrate surface. The formation mechanism of the nanostructured coatings was also discussed. The measured microhardness value of the coating was approximately 1659 Hv100 g, and the calculated crack extension force was about 34.9 J/m2.  相似文献   

20.
D.W. Wheeler 《哲学杂志》2013,93(3):285-310
This paper describes a study of the behaviour of diamond coatings when subjected to solid particle erosion from sand particles. The coatings were deposited by chemical vapour deposition (CVD) onto tungsten substrates and tested using a high velocity air–sand erosion test facility. The erosion tests were conducted using particle impact velocities of between 33 and 268 m/s. Examination of the eroded test specimens showed that the principal damage features were circumferential cracks and pin-holes. Comparison with Hertz impact theory revealed that the measured circumferential crack diameters were more than double the predicted Hertzian contact diameter. Moreover, a trend of increasing circumferential crack diameter with coating thickness, which is not predicted by Hertz, was found. Instead, the crack diameters showed good agreement with those predicted by the theory of stress wave reinforcement, which is more commonly associated with liquid impact damage of brittle materials. During impact, the bulk compression and shear waves are reflected at the rear surface of debonded regions of the coating to return to the front surface and reinforce the Rayleigh surface wave, which generates a tensile stress. Where this stress exceeds the local tensile strength of the coating, a ring of cracks surrounding the area of impact is created. The results from the present study therefore suggest that stress wave reflection is responsible for the formation of the cracks at locally debonded regions of the coating. This hypothesis was supported by images acquired using scanning acoustic microscopy, which showed that circumferential cracks and pin-holes were only found on areas of the coating that had become delaminated by multiple particle impacts during the erosion tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号