首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Organic ultraviolet (UV) ray absorbents have been used as sunscreen materials, but may pose a safety problem when used at high concentration. In order to prevent direct contact of organic UV ray absorbent to the human skin several organic UV absorbents such as 4-hydroxy-3-methoxybenzoic acid, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid, 4-hydroxy-3-methoxycinnamic acid, 4,4′-diaminostilbene-2,2′-disulfonic acid, p-aminobenzoic acid and urocanic acid were intercalated into Zn2Al layered double hydroxides (Zn2Al-LDHs) by anion-exchange and/or co-precipitation reaction. Thereafter, the obtained nanocomposites were coated with amorphous silica. Significant amounts (20–40 mass%) of organic UV absorbers were intercalated as univalent and/or divalent anions. The UV ray absorption ability of the organic UV absorbents increased and their catalytic activity for the air oxidation of castor oil greatly decreased when they were intercalated into the interlayer spaces of the Zn2Al-LDHs. The deintercalation of organic molecules from LDHs by the anion exchange reaction with carbonate ion could be greatly depressed by coating the nanocomposite powder with amorphous silica.  相似文献   

2.
Nano-sized ceria particles were coated on the silica surface by the precipitation method using ammonium cerium nitrate and urea as precipitant with poly(vinylpyrrolidone) (PVP) as assistant. The structures and compositions of ceria-coated silica particles were characterized using X-ray diffraction (XRD), field-emission scanning microscopy (FE-SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements. The results show that nano-size ceria particles were coated uniformly around the surface of silica particles when PVP was used as assistant during coating process, while without PVP, the ceria particles were grown sparsely on the silica particle surface and many ceria particles grow up through independent nucleation in the solution. Then, the chemical mechanical polishing (CMP) behaviors of the as-prepared ceria-coated silica particles on glass substrate were investigated. The CMP test results suggest that the as-prepared ceria-coated silica particles exhibit higher removal rate than pure silica particles without deteriorating the surface quality. In addition, online coefficient of friction (COF) was conducted during the polishing process. The COF data indicate that the COF values of ceria-coated silica particles are larger than those of pure silica particles due to their surface properties.  相似文献   

3.
A modified levitation-in-flow Gen-Miller technique is developed to produce nanodisperse aluminum particles 40–200 nm in size with a barrier coating of controlled thickness made of aluminum oxides and (oxy)nitrides for the use as a dielectric filler in composite materials. The polymerization filling technique (in situ polymerization) is used to synthesize new highly filled nanocomposite materials based on UHMWPE and nanodisperse aluminum with the barrier coating combining dielectric, heat-conducting, and plastic properties, which can replace brittle ceramics in a number of fields. The samples of such nanocomposites with a content of nanoaluminum ranging from 20 to 80 wt % were synthesized and characterized by electron microscopy and X-ray diffraction analysis.  相似文献   

4.
《Composite Interfaces》2013,20(5):455-465
This paper attempted to prepare hybrid particles in which the inorganic and organic components were chemically bonded in simplification. The polymethacryloxypropylsilsesquioxanes-polyacrylate (PMPS-PA) latex particles were prepared through seeded emulsion polymerization using polymethacryloxypropylsilsesquioxanes (PMPS) as seed. As a reference, silica-polyacrylate (S-PA) latex particles were obtained with similar method. Fourier transform infrared spectroscopy, dynamic light scattering and transmission electron microscopy were used to characterize the chemical composition and morphology of the resultant hybrid particles. The results showed that PMPS-PA particles were uniformly spherical with core-shell morphology and possessed narrow size distribution, whereas S-PA hybrid particles were not uniform as PMPS-PA particles and had bimodal size distribution. The surface properties, optical properties and thermal stability of the corresponding films were investigated by scanning electron microscopy, UV–Vis spectroscopy and thermogravimetric analysis. Comparatively, PMPS-PA film exhibited smoother surface, larger optical transmittance and better thermal stability than S-PA film. These could be attributed to PMPS that were chemically bonded with PA phases, whereas weak interactions between silica and PA phases in S-PA, where silica surface modification was usually required to increase the surface interactions. Thus, PMPS particles containing reactive carbon-carbon double bond could be prospective and be directly used as seeds in the following emulsion polymerization to prepare chemically bonded hybrid particles.  相似文献   

5.
The electrode reaction was examined on ceria coated YSZ by a platinum point electrode in H2-H2O atmosphere at 973 K- 1173 K. The thickness of the ceria coating layer was altered from 0 to 2.5 μm, fabricated by a laser ablation and by a vacuum vapor deposition method on YSZ single crystals. The electrode / electrolyte interface conductivity increased with 1/4 powers ofp(H2) andp(H2O) on both ceria coated and non-coated YSZ. The interface conductivity was significantly improved on a thicker ceria coating surface than 1 μm. The effective electrode reaction radius also increased in a thick ceria coating. The18O/16O exchange experiment at low oxygen partial pressure revealed that the oxygen surface exchange rate of ceria is not high compared with that of YSZ. It can be concluded that the bulk ionic conduction of ceria makes a more effective contribution to the electrode reaction than the surface catalytic activity in H2-H2O atmosphere. Paper presented at the 4th Euroconference on Solid State Ionics, Renvyle, Galway, Ireland, Sept. 13–19, 1997  相似文献   

6.
In this paper, we report the synthesis of silica coated ZnO nanoparticles by ultrasound irradiation of a mixture of dispersion of ZnO, tetraethoxysilane (TEOS), and ammonia in an ethanol-water solution medium. The silica coating layer formed at the initial TEOS/ZnO loading of 0.8 for 60 min ultrasonic irradiation was uniform and extended up to 3 nm from the ZnO surface as revealed from HR-TEM images. Silica coated ZnO nanoparticles demonstrated a significant inhibition of photocatalytic activity against photodegradation of methylene blue dye in aqueous solution. The effects of silica coating on the UV blocking property of ZnO nanoparticles were also studied.  相似文献   

7.
The ceria nanospindles have been successfully synthesized via a simple template-free solvothermal treatment by employing a mixture of glycerin and water as the reaction solvent. The properties of the ceria nanospindles were characterized. A series of control experiments confirms that the reaction solvents, reaction temperature and time are the crucial factors determining the formation of ceria nanospindles, and by adjusting the experimental parameters the other ceria micro/nanostructures such as columns, spheres, and rods were obtained. The platinum coated ceria nanospindles show the excellent low-temperature catalytic activity in the oxidation of carbon monoxide as compared with other micro/nanostructures, which is mainly due to their special shape and uniformly-distributed active sites.  相似文献   

8.
Patil  S.  Kuiry  S.C.  Seal  S.  Vanfleet  R. 《Journal of nanoparticle research》2002,4(5):433-438
Cerium oxide has been investigated to be an effective coating material for high temperature applications for various alumina- and chromia-forming alloys. The present study investigates the use of microemulsion method to obtain monodispersed, non-agglomerated nanocrystalline ceria particles in the range of 5nm using sodium bis(2-ethylhexyl) sulphosuccinate (AOT) as a surfactant. Furthermore, the use of non-agglomerated nanocrystalline ceria particles to develop improved high temperature oxidation resistant coatings on AISI 304-grade stainless steel was investigated. It was found that non-agglomerated nanocrystalline ceria particles were more effective in improving the oxidation resistance than the agglomerated nanocrystalline particles.  相似文献   

9.
The functional copolymer bearing alkoxysilyl and pyrene groups, poly[3-(triethoxysilyl)propyl methacrylate]-co-[(1-pyrene-methyl) methacrylate] (TEPM13-co-PyMMA3), was synthesized via atom transfer radical polymerization. Attributing the π–π interaction of pyrene units with the walls of single-walled carbon nanotubes (SWNTs), this polymer could disperse and exfoliate SWNTs in different solvents through physical interaction as demonstrated by TEM, UV/Vis absorption, and FT-IR analysis. The alkoxysilyl groups functionalized SWNTs were reacted with different inorganic precursors via sol–gel reaction, and, as a results, silica, titania, and alumina were coated onto the surface of SWNTs, respectively via copolymers as a molecular glue. The nanocomposites of ceramic oxides/SWNTs were characterized by SEM analysis. Dependent upon the feed, the thickness of inorganic coating can be tuned easily. This study supplies a facile and general way to coat SWNTs with ceramic oxides without deteriorating the properties of pristine SWNTs.  相似文献   

10.
超微镍粒子/聚苯胺纳米复合材料制备及其表征   总被引:1,自引:0,他引:1  
反相微乳液法 (inversemicroemulsionsystems ,W /O型 )是制备纳米复合材料有效而简单的液相化学制备方法[1,2 ] .本工作首次采用两步连续反相微乳液法原位聚合制备超微镍粒子 (Ni) /聚苯胺 (PANI)纳米复合材料 .首先 ,利用无机化合物之间的氧化还原反应 ,将十二烷基苯磺酸钠 (DBS)和NiCl2 溶液按一定比例加入锥形瓶中 ,再加入异戊醇和正庚烷混合溶剂 ,常温下电磁力搅拌 ,体系变得半透明 (淡黄色 )形成微乳溶液 (W /O型 )称为 (A) ;然后再配制DBS和NaBH4 与异戊醇和正庚烷混合溶剂 ,形成微乳溶液 (W /O型 )称为 (B) ;两步连续反相…  相似文献   

11.
Hexagonally ordered mesoporous silica materials, MCM-41 and SBA-15, have been synthesized and loaded with Ag nanoparticles, utilizing both chemical synthesis and ultra-short pulsed laser ablation in liquid. In laser ablation, a silver target, immersed in aqueous suspension of ordered mesoporous silica SBA-15, was irradiated by ultra-short laser pulses to generate silver nanoparticles. For comparison, samples of similar silver contents were prepared either by incorporating silver into the SBA-15 during a hydrothermal synthesis or by introducing silver in MCM-41 by template ion-exchange. Samples were characterized by XRD, N2 physisorption, TEM and UV–vis spectroscopy. All preparations contained significant amount of 5–50 nm size silver agglomerates on the outer surface of the silica particles. The laser ablation process did not cause significant destruction of the SBA-15 structure and metallic silver (Ag0) nanoparticles were mainly generated. It is demonstrated that by laser ablation in aqueous silica suspension smaller and more uniform metallic silver particles can be produced and loaded on the surface of the silica support than by synthesis procedures. Catalytic properties of the samples have been tested in the total oxidation of toluene. Because of its favorable Ag dispersity, the Ag/SBA-15 catalyst, generated by the laser ablation method, had better catalytic stability and, relative to its Ag load, higher activity than the conventional Ag/SBA-15 preparations.  相似文献   

12.
Abstract Nearly monodispersed particles of silica were prepared and coated with uniform layers of titanium dioxide in anatase phase by hydrolysis and condensation of titanium butoxide. The coating thickness could be altered by adjusting the concentration of reactants (titanium butoxide and water) and the amount of added silica particles. Different coating thicknesses were deposited and studied using optical absorption spectroscopy, electron microscopy and Fourier transform infra-red spectroscopy. It was found that silica particles of size 170 ±5 nm were coated with 23±5 nm thick layer of titanium dioxide. Alternatively titania particles of size 340±5 nm were synthesized by controlled hydrolysis of titanium ethoxide in the presence of sodium chloride. These particles were further coated with 135±5 nm thick layer of silica to investigate changes in properties after changing the shell material  相似文献   

13.
Magnetic nanoparticles coated with silica have been subjected of extensive, and, in many aspects, also intensive investigations because of their potential application in different technological fields, particularly in biomedicine. This work was conceived and is being carried out in two main parts: (1) synthesis of the ferrimagnetic nanoparticles, specifically magnetite, and (2) coating these particles with tetraethyl orthosilicate (TEOS). The nanosized magnetite sample was prepared by the reduction–precipitation and the nanomagnetite particles were coated by the sol-gel method, based on the hydrolysis of tetraethyl orthosilicate (TEOS). The so obtained materials were characterized with powder X-ray diffraction (XRD), FTIR spectroscopy, saturation magnetization measurements, and 57Fe Mössbauer spectroscopy at room temperature.  相似文献   

14.
This article presents a process for surface coating and functionalization of luminescent silicon nanoparticles. The particles were coated with silica using a microemulsion process that was adapted to the fragile silicon nanoparticles. The as-produced core–shell particles have a mean diameter of 35 nm and exhibit the intrinsic photoluminescence of the silicon core. The silica layer protects the core from aqueous oxidation for several days, thus allowing the use of the nanoparticles for biological applications. The nanoparticles were further coated with amines and functionalized with polyethylene glycol chains and the toxicity of the particles has been evaluated at the different stages of the process. The core–shell nanoparticles exhibit no acute toxicity towards lung cells, which is promising for further development.  相似文献   

15.
There has been a growing interest in metal nano powders recently, and researches on Copper (Cu) nano particles are actively pursued due to its good electrical conductivity and its low prices. However, its easiness to oxidation and corrosion has delayed its research progress in Cu nano particles to be applied in inkjet printed electronics and other related research area. To overcome these problems, new surface coating method on Cu nano particles has been developed using dry process instead of conventional wet coating method. Octanethiol was used as a dry coating material because it has sulfur at the end of monolayer to chemically bond to the surface of fresh non-oxidized Cu nano particles to prevent oxidation. Octanethiol does not bond to oxidized surface of Cu nano particles. Previously, bonding between octanethiol and Cu nano particles, more specifically bonding between Cu surface and Sulfur (S) was analyzed using X-ray Photoelectron Spectroscopy (XPS). As a result, S peak was detected on the coated Cu nano particles, indicating that octanethiol chain has been successfully coated on the surface of Cu nano particles.In this study, optimization of dry coating condition was studied by varying coating time and cycles. XPS was used to analyze the composition of coated material to monitor the change in amount of S and O peaks for each condition. It was found that as the amount of Sulfur increased, the amount of Oxygen decreased and vice versa. This finding indicates that dry coating has suppressed the formation of oxygen on the surface of Cu nano powders by surrounding Cu surface with Sulfur end of octanethiol chain. Based on these experiments, the optimum coating condition for suppressing Cu oxidation was found to be 5 min and 6 cycles. For future work, the lifetime of octanethiol layer on the surface of Cu surface needs to be studied.  相似文献   

16.
Transparent mirror coated, SiO2–Ag/PV P nanocomposites were prepared on the Pyrex glass slides by dip-coating technique. Embedding of the silver (Ag) nanoparticles on silica modified polyvinyl pyrrolidone (PVP) was performed by the sol–gel method. As prepared transparent mirror coated SiO2–Ag/PV P nanocomposite films were finally characterized for surface morphology, chemistry, and nano size dimensions using various advanced analytical techniques including, UV visible, Fourier transform, infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), dispersive x-ray analaysis (EDAX) and transmission electron microscopy (TEM) analysis. It was found that all the prepared samples were almost uniform particles of Ag nanospheres of 7–8 nm diameters arranged as double paralleled nanowires with an average length of 200–450 nm and diameters of around 20–25 nm.  相似文献   

17.
Monodisperse silica-coated polystyrene (PS) nano-composite abrasives with controllable size were prepared via a two-step process. Monodisperse positively charged PS colloids were synthesized via polymerization of styrene by using a cationic initiator. In the subsequent coating process, silica formed shell on the surfaces of core PS particles via the ammonia-catalyzed hydrolysis and condensation of tetraethoxysilane. Neither centrifugation/water wash/redispersion cycle process nor surface modification or addition surfactant was needed in the whole process. The morphology of the abrasives was characterized by scanning electron microscope. Transmission electron microscope and energy dispersive X-ray analysis results indicated that silica layer was successfully coated onto the surfaces of PS particles. Composite abrasive has a core-shell structure and smooth surface. The chemical mechanical polishing performances of the composite abrasive and conventional colloidal silica abrasive on blanket copper wafers were investigated. The root mean square roughness decreases from 4.27 nm to 0.56 nm using composite abrasive. The PS/SiO2 core-shell composite abrasives exhibited little higher material removal rate than silica abrasives.  相似文献   

18.
Magnetite nanoparticles were coated with silica through the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) under ultrasonic irradiation. The ultrasonic irradiation was used to prevent the agglomeration of the magnetite particles and accelerate the hydrolysis and condensation of TEOS. TEM, DLS, XRF, VSM, TG and sedimentation test were used to characterize the silica-coated magnetite particles. The dispersibility of silica-coated magnetite particles in aqueous solution was improved significantly and the agglomerate particle size was decreased to 110 nm. It was found that the agglomerate particle size of silica-coated magnetite particles was mainly decided by the coating temperature and the pH value in the silica-coating process. The weight ratio of silica in silica-coated magnetite particles was mainly decided by the pH value in the silica-coating process. The dispersibility of silica-coated magnetite particles was mainly decided by the agglomerate particle size of the suspension. The oxidation of magnetite particles in air was limited through the coated silica. The magnetism of silica-coated magnetite particles decreased slightly after silica-coating.  相似文献   

19.
显微红外光谱法研究聚乙烯复合材料光氧化的深度分布   总被引:3,自引:3,他引:3  
采用显微红外光谱法结合表面形貌分析研究了分别填充碳酸钙、绢英粉、云母、高岭土和硅藻土的高密度聚乙烯(HDPE)的自然光氧化随深度的分布。研究结果表明无机填料对HDPE光氧化的深度分布有很大的影响。填充碳酸钙的HDPE从表面到内部都没有明显氧化发生。而填充绢英粉、云母、高岭土和硅藻土的HDPE从表面到内部羰基指数逐渐减小,氧化深度都在150 μm以上。HDPE复合材料沿深度方向的氧化情况与其断面裂纹的产生情况吻合。结合无机填料的紫外吸收特性讨论了它们对HDPE光氧化的影响机理。  相似文献   

20.
Elias Stathatos 《Ionics》2005,11(1-2):140-145
Nanocomposite organic/inorganic materials made through sol-gel method exhibit high values of ionic conductivity when they were impregnated with the redox couple I 3 /I Two different kinds of nanocomposite materials, depending on the different interactions between silica and poly(ethylene)oxide or poly(propylene)oxide blends, were prepared by the sol-gel technique in room temperature. Gels, for both nanocomposite materials, were obtained by acetic acid catalyzed solvolysis and were regulated by formation of intermediate products, such as silicon ester and -Si-O-Si-oligomers. Time-resolved fluorescence techniques and conductivity measurements were performed in order to define the parameters which allow maximum probe mobility and minimum confinement conditions with the aim to apply these materials in quasi solid state electrolytes. Paper presented at the Patras Conference on Solid State Ionics — Transport Properties, Patras, Greece, Sept. 14 – 18, 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号