首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We have investigated three-dimensional (3-D) architectures–microspheres and radial structures–based on biopolymer-assisted self-assembly from one-dimensional ZnO nanorods. The developed method is simple, rapid and cost-effective and can be used for self-assembly of different complex superstructures. A possible model of 3-D architectures self-assembled with biopolymer assistance is presented using minimum energy considerations. Scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy, micro–Raman spectroscopy and cathode luminescence investigations show that the novel 3-D architectures are built from high-purity ZnO nanorods with a wurtzite structure. The resulting radial structures show an intense ultraviolet (UV) cathode luminescence emission suggesting applications as UV light emitting diodes or lasers. Their structural characteristics endow them with a broad area of applications and offer a possibility to be used as fundamental low-dimensional building units. These building units open opportunities for the self-assembly of multifunctional nanostructured systems with applications in bioscience and nanomedicine, electronics and photonics.  相似文献   

2.
In the present work,vertically aligned ZnO nanorod arrays with tunable size are successfully synthesized on nonseeded ITO glass substrates by a simple electrodeposition method.The effect of growth conditions on the phase,morphology,and orientation of the products are studied in detail by X-ray diffraction(XRD),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).It is observed that the as-prepared nanostructures exhibit a preferred orientation along c axis,and the size and density of the ZnO nanorod can be controlled by changing the concentration of ZnCl2.Field emission properties of the as-synthesized samples with different diameters are also studied,and the results show that the nanorod arrays with a smaller diameter and appropriate rod density exhibit better emission properties.The ZnO nanorod arrays show a potential application in field emitters.  相似文献   

3.
以Zn(NO3)2·6H2O/HMT为反应物,通过低温水热反应过程,在籽晶衬底上制备了ZnO纳米棒,分别用场发射扫描电子显微镜和X射线衍射仪对ZnO纳米棒形貌与晶体结构进行了表征,并研究了不同方法制备的ZnO籽晶层以及籽晶层厚度对ZnO纳米棒形貌及结晶质量的影响.结果表明磁控溅射籽晶衬底上生长的ZnO纳米棒结晶质量最好,而籽晶层的厚度对ZnO纳米棒的垂直取向性有一定的影响.  相似文献   

4.
ZnO thin films co-doped with Al and Sb with different concentrations and a fixed molar ratio of AlCl 3 to SbCl 3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550°C for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al and Sb are of wurtzite hexagonal ZnO with a very small distortion, and the biaxial stresses are 1.03×10 8 , 3.26×10 8 , 5.23×10 8 , and 6.97×10 8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5Ω·cm.  相似文献   

5.
钟文武  刘发民  蔡鲁刚  周传仓  丁芃  张嬛 《中国物理 B》2010,19(10):107306-107306
ZnO thin films co-doped with Al and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol--gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al and Sb are of wurtzite hexagonal ZnO with a very small distortion, and the biaxial stresses are 1.03×108, 3.26×108, 5.23×108, and 6.97×108 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5Ω·cm.  相似文献   

6.
通过改进传统水热法的密闭、高压的条件,在非密闭、常压环境下在氧化铟锡玻璃衬底上自组装生长了取向高度一致并且分散性好的ZnO纳米棒阵列.首先将乙酸锌溶胶旋涂到氧化铟锡玻璃衬底上,经热处理得到致密的ZnO纳米晶薄膜,然后将其垂直放入前驱体溶液中通过化学溶液沉积生长得到ZnO纳米棒阵列.室温条件下,对样品进行了SEM和XRD的测试.表明生成的氧化锌纳米棒阵列沿c轴取向,实现了定向生长,且纳米棒结晶较好,为六方纤锌矿结构,直径约为40 nm,长度达到微米量级.室温下的吸收光谱表明,由此方法得到的纳米棒纯度较高,有强的紫外吸收.室温下,观测到了该有序ZnO纳米棒阵列在387 nm处强的窄带紫外发射,半高宽小于30 nm,在468 nm处还有一强度较弱的蓝光发射峰.  相似文献   

7.
侯清玉  许镇潮  乌云  赵二俊 《物理学报》2015,64(16):167201-167201
在Cu重掺杂量摩尔数为0.02778–0.16667的范围内, 对ZnO掺杂体系磁电性能影响的第一性原理研究鲜见报道. 采用基于自旋密度泛函理论的平面波超软赝势方法, 用第一性原理计算了两种不同Cu单掺杂量Zn1-xCuxO (x=0.02778, 0.03125)超胞的能带结构分布和态密度分布. 结果表明, 掺杂体系是半金属化的稀磁半导体; Cu掺杂量越增加、相对自由空穴浓度越增加、空穴有效质量越减小、电子迁移率越减小、电子电导率越增加. 此结果利用电离能和Bohr半径进一步获得了证明, 计算结果与实验结果相符合. 在限定的掺杂量0.02778–0.0625 的条件下, Cu单掺杂量越增加、掺杂体系的体积越减小、总能量越升高、稳定性越下降、形成能越升高、掺杂越难. 在相同掺杂量、不同有序占位Cu双掺ZnO体系的条件下, 双掺杂Cu-Cu间距越增加, 掺杂体系磁矩先增加后减小; 当沿偏a轴或b轴方向Cu–O–Cu相近邻成键时, 掺杂体系会引起磁性猝灭; 当沿偏c轴方向Cu–O–Cu相近邻成键时, 掺杂体系居里温度能够达到室温以上的要求. 在限定的掺杂量0.0625–0.16667的条件下, 沿偏c轴方向Cu–O–Cu相近邻成键时, Cu 双掺杂量越增加, 掺杂体系总磁矩先增加后减小. 计算结果与实验结果变化趋势相符合.  相似文献   

8.
两步化学沉积法制备ZnO薄膜及其场发射特性   总被引:1,自引:1,他引:1       下载免费PDF全文
在低温常压条件下,以ITO玻璃为衬底,采用电化学法与湿化学法结合的两步化学沉积法制备了团簇状ZnO薄膜。利用XRD,SEM分析了薄膜结构和表面形貌,并采用二极管结构在高真空条件下对薄膜进行了场发射性能测试。稳定发射后,开启电场为3.0 V/μm。当电场为5.8 V/μm时,电流密度为583.3 μA/cm2。研究表明:两步化学沉积法低温制备ZnO薄膜是可行的,且该薄膜具有良好的场发射性能。  相似文献   

9.
Zinc oxide (ZnO) nanorods grown on chemical vapor deposited diamond films by thermal vapor transport method have been investigated. In the initial growth status, the semi-spherical ZnO nuclei were preferably deposited near the growth steps on the terraces and the boundaries of diamond grains. With increasing the growth time, the [0 0 0 1] orientated ZnO nanorods appeared and further covered the whole diamond film. It is found that the size of diamond grains would determine the diameter of ZnO nanorods. The electron field emission properties of the ZnO nanorods/diamond system have been significantly improved with respect to pure diamond film. The feature of the ZnO nanorods grown on diamond films played an important role in further enhancing the electron field emission performances.  相似文献   

10.
Undoped and Mg-doped ZnO thin films were deposited on Si(1 0 0) and quartz substrates by the sol-gel method. The thin films were annealed at 873 K for 60 min. Microstructure, surface topography and optical properties of the thin films have been measured by X-ray diffraction (XRD), atomic force microscope (AFM), UV-vis spectrophotometer, and fluorophotometer (FL), respectively. The XRD results show that the polycrystalline with hexagonal wurtzite structure are observed for the ZnO thin film with Mg:Zn = 0.0, 0.02, and 0.04, while a secondary phase of MgO is evolved for the thin film with Mg:Zn = 0.08. The ZnO:Mg-2% thin film exhibits high c-axis preferred orientation. AFM studies reveal that rms roughness of the thin films changes from 7.89 nm to 16.9 nm with increasing Mg concentrations. PL spectra show that the UV-violet emission band around 386-402 nm and the blue emission peak about 460 nm are observed. The optical band gap calculated from absorption spectra and the resistivity of the ZnO thin films increase with increasing Mg concentration. In addition, the effects of Mg concentrations on microstructure, surface topography, PL spectra and electrical properties are discussed.  相似文献   

11.
Three-dimensional (3D) nanostructures in thin film solar cells have attracted significant attention due to their appli- cations in enhancing light trapping. Enhanced light trapping can result in more effective absorption in solar cells, thus leading to higher short-circuit current density and conversion efficiency. We develop randomly distributed and modified ZnO nanorods, which are designed and fabricated by the following processes: the deposition of a ZnO seed layer on sub- strate with sputtering, the wet chemical etching of the seed layer to form isolated islands for nanorod growth, the chemical bath deposition of the ZnO nanorods, and the sputtering deposition of a thin Al-doped ZnO (ZnO:Al) layer to improve the ZnO/Si interface. Solar cells employing the modified ZnO nanorod substrate show a considerable increase in solar energy conversion efficiency.  相似文献   

12.
A low cost hydrothermal synthesis method to synthesize Mn‐doped ZnO nanorods (NRs) with controllable morphology and structure has been developed. Ammonia is used to tailor the ammonium hydroxide concentration, which provides a source of OH for hydrolysis and precipitation during the growth instead of HMT. The morphological, chemical composition, structural, and electronic structure studies of the Mn‐doped ZnO NRs show that the Mn‐doped ZnO NRs have a hexagonal wurtzite ZnO structure along the c‐axis and the Mn ions replace the Zn sites in the ZnO NRs matrix without any secondary phase of metallic manganese element and manganese oxides observed. The fabricated PEDOT:PSS/Zn0.85Mn0.15O Schottky diode based piezoresistive sensor and UV photodetector shows that the piezoresistive sensor has pressure sensitivity of 0.00617 kPa–1 for the pressure range from 1 kPa to 20 kP and 0.000180 kPa–1for the pressure range from 20 kPa to 320 kPa with relatively fast response time of 0.03 s and the UV photodetector has both relatively high responsivity and fast response time of 0.065 A/W and 2.75 s, respectively. The fabricated Schottky diode can be utilized as a very useful human‐friendly interactive electronic device for mass/force sensor or UV photodetector in everyday living life. This developed device is very promising for small‐size, low‐cost and easy‐to‐customize application‐specific requirements. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

13.
A layer of silver was deposited onto the surface of glass substrates, coated with AZO (Al-doped ZnO), to form Ag/AZO film structures, using e-beam evaporation techniques. The electrical and optical properties of AZO, Ag and Ag/AZO film structures were studied. The deposition of Ag layer on the surface of AZO films resulted in lowering the effective electrical resistivity with a slight reduction of their optical transmittance. Ag (11 nm)/AZO (25 nm) film structure, with an accuracy of ±0.5 nm for the thickness shows a sheet resistance as low as 5.6 ± 0.5 Ω/sq and a transmittance of about 66 ± 2%. A coating consisting of AZO (25 nm)/Ag (11 nm)/AZO (25 nm) trilayer structure, exhibits a resistance of 7.7 ± 0.5 Ω/sq and a high transmittance of 85 ± 2%. The coatings have satisfactory properties of low resistance, high transmittance and highest figure of merit for application in optoelectronics devices including flat displays, thin films transistors and solar cells as transparent conductive electrodes.  相似文献   

14.
Sn掺杂ZnO纳米晶的水热法制备及光学性能   总被引:3,自引:2,他引:1  
以ZnCl2和NaOH为原料,用SnCl4·4H2O作掺杂剂,通过水热法合成了Sn掺杂ZnO纳米颗粒。利用X射线衍射(XRD)、场发射扫描电镜(FE-SEM)、紫外-可见吸收光谱(UV-Vis)及光致发光(PL)光谱等测试技术对样品的物相、形貌及光学性能进行了表征。结果表明:制得的Sn掺杂ZnO纳米粒子具有六角纤锌矿结构。随着锡掺杂浓度的增大,纳米晶的平均粒度增加,晶体形貌由短棒状向单锥和双锥状转变;提高前驱液的pH值,所得样品的形貌由长柱状向短柱状转变。室温下,观测到三个光致发光带,一个峰值在433nm处的强紫光发射峰,一个约在401nm处的近紫外发光峰及一个在466nm处的弱蓝光发光峰。在实验掺杂浓度范围内,Sn的掺杂只是改变纳米ZnO的发光强度,对发光峰位置影响不大。  相似文献   

15.
Hydrothermally processed highly photosensitive ZnO nanorods based plasmon field effect transistors (PFETs) have been demonstrated utilizing the surface plasmon resonance coupling of Au and Pt nanoparticles at Au/Pt and ZnO interface. A significantly enhanced photocurrent was observed due to the plasmonic effect of the metal nanoparticles (NPs). The Pt coated PFETs showed Ion/Ioff ratio more than 3 × 104 under the dark condition, with field-effect mobility of 26 cm2 V−1 s−1 and threshold voltage of −2.7 V. Moreover, under the illumination of UV light (λ = 350 nm) the PFET revealed photocurrent gain of 105 under off-state (−5 V) of operation. Additionally, the electrical performance of PFETs was investigated in detail on the basis of charge transfer at metal/ZnO interface. The ZnO nanorods growth temperature was preserved at 110 °C which allowed a low temperature, economical and simple method to develop highly photosensitive ZnO nanorods network based PFETs for large scale production.  相似文献   

16.
赵显伟  郜小勇  陈先梅  陈超  赵孟珂 《中国物理 B》2013,22(2):24202-024202
The nitrogen doping of ZnO film deposited by the magnetron sputtering method is subsequently realized by the hydrothermal synthesis method.The nitrogen-doped ZnO film is preferably(002) oriented.With the increase of hexamethylenetetramine(HMT) solution concentration,the average grain size of the film along the 002 direction almost immediately decreases and then monotonously increases,conversely,the lattice strain first increases and then decreases.The structural evolution of the film surface from compact and even to sparse and rough is attributed to the enhanced nitrogen doping content in the hydrothermal process.The transmission and photoluminescence properties of the film are closely related to grain size,lattice strain,and nitrogen-related defect arising from the enhanced nitrogen doping content with HMT concentration increasing.  相似文献   

17.
ZnO nanorods with uniform diameter and length have been synthesized on an indium-tin oxide (ITO) substrate by using a simple thermal evaporation method which is suitable to larger scale production and without any catalyst or additives. The samples were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-vis (UV-vis) absorption spectrum, photoluminescence (PL) spectrum and Raman spectrum. The single-phase ZnO nanorods grow well-oriented along the c-axis of its wurtzite structure on ITO substrate. The ZnO nanorods shows sharp and strong UV emission located at 380 nm without notable visible light emission in the PL spectrum, which suggests the good crystallinity of the nanorods, which was also testified by their Raman spectrum. The photodegradation of methylene orange (MO) in aqueous solution reveals that the well-arranged c-axis growth of ZnO nanorods possess evidently improved photocatalytic performance and these properties enable the ZnO nanorods potential application in UV laser.  相似文献   

18.
Sb-doped ZnO thin films with different values of Sb content (from 0 to 1.1 at.%) are deposited by the sol-gel dip- coating method under different sol concentrations. The effects of Sb-doping content, sol concentration, and annealing ambient on the structural, optical, and electrical properties of ZnO films are investigated. The results of the X-ray diffraction and ultraviolet-visible spectroscopy (UV-VIS) spectrophotometer indicate that each of all the films retains the wurtzite ZnO structure and possesses a preferred orientation along the c axis, with high transmittance (〉 90%) in the visible range. The Hall effect measurements show that the vacuum annealed thin films synthesized in the sol concentration of 0.75 mol/L each have an adjustable n-type electrical conductivity by varying Sb-doping density, and the photoluminescence (PL) spectra revealed that the defect emission (around 450 nm) is predominant. However, the thin films prepared by the sol with a concentration of 0.25 mol/L, despite their poor conductivity, have priority in ultraviolet emission, and the PL peak position shows first a blue-shift and then a red-shift with the increase of the Sb doping content.  相似文献   

19.
The effect of dopant concentration and annealing in the oxidizing atmosphere on the structural, optical, and electrical properties of ZnO:Er films deposited on sapphire substrates by the electron-beam evaporation method is investigated. The optical and electrical properties of these films were studied by UV-VIS-IR absorption and reflection spectroscopy, photoluminescence, and resistivity measurements. Experimental results reveal that as-deposited ZnO:Er films have both high transmittance in the visible range and low electrical resistivity and can be used as efficient transparent conducting oxides (TCOs). These films annealed in the oxidizing atmosphere have a visible emission band which can be used to fabricate light-emitting diodes.  相似文献   

20.
We report a novel method for producing aligned ZnO nanorods (ANR) on self-grown ZnO template in a single step process involving growth of ZnO by vapor transport, followed by quenching of growing ZnO flux in liquid nitrogen. In the present study Zn powder turns into ZnO sheet under oxygen flow at ∼900 °C and bottom surface of the sheet acts as template for the growth of ANR. It is revealed from XRD and EDAX analysis that the bottom of the sheet is Zn rich region and acts as self catalyst for the growth of ANR. The grown nanorods have length up to several tens of micrometers with diameters ranging from ∼100 to 150 nm. Microstructural analysis of ANR indicates the fractal like configuration. The field emission properties have been investigated for ANR with fractal geometry using the ANR on self-grown ZnO template as a cathode directly. The turn-on electric field required to draw current density of ∼1.0 μA/cm2 has been found to be ∼0.98 V/μm. The field enhancement factor based on Fowler-Nordheim (F-N) plot was found to be ∼7815 for ANR. The fractal geometry of ANR has been shown to be advantageous for achieving improved field emission features. The present investigations of synthesis involving formation of ANR over self-grown ZnO template, together with fractal configuration of the as-synthesized ANR, are first of their type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号