首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Deposition of one monolayer of Sb prior to the deposition of Mn at 600 °C is observed to increase the MnSi1.7 island density by about two orders of magnitude as well as to change the crystalline orientation of the silicide grains. The preferential epitaxial orientation of MnSi1.7 grains grown by this process is determined to be MnSi1.7(1 0 0)[0 1 0]||Si(0 0 1)[1 0 0]. This growth procedure results in the silicide growth into the Si matrix. For comparison, the same deposition process carried out without Sb leads to silicide formation on top of the substrate surface. The observed morphological changes of the MnSi1.7 layers can be explained by a reduced surface diffusion of the Mn atoms on Si(0 0 1) in presence of the Sb monolayer. Additionally, lateral Si diffusion is considered to be nearly suppressed, which is responsible for the observed silicide growth into the substrate.  相似文献   

2.
We investigated the growth of in-situ n-type doped epitaxial Si layers with arsenic and phosphorus by means of low-temperature chemical vapor deposition using trisilane as Si-precursor. Indeed, in order to prevent the alteration of the characteristics of the devices which are already present on the wafer, an epitaxy process at low temperature is highly desired for applications such as BiCMOS. In this work, the varying parameters are the deposition temperature, the Si-precursor mass flow and the dopant gas flow. As a result, a process for the deposition of heavily doped epilayers was demonstrated at 600 °C with high deposition rate, which is important for maintaining high throughput and low process cost. We showed that using trisilane as a Si-precursor resulted in a much more linear n-type doping behavior than using dichlorosilane. Therefore it allowed an easier process control and a wider dynamic doping range. Our process is an interesting route for the epitaxy of a low-resistance emitter layer for bipolar transistor application.  相似文献   

3.
Epitaxial ZnO thin films have been synthesized directly on Si(1 1 1) substrates by pulsed laser deposition (PLD) in vacuum. The reflection high-energy electron diffraction (RHEED) indicates that streaky patterns can be clearly observed from the ZnO epilayers prepared at 600 and 650 °C, revealing a two-dimensional (2D) growth mode. While the ZnO thin film deposited in oxygen ambient shows ring RHEED pattern. There is a compressive in-plane stress existing in the ZnO epitaxial film, but a tensile one in the polycrystalline film. Compared with the ZnO epilayer, the ZnO polycrystalline film shows more intense ultraviolet emission (UVE) with a small full width at half maximum (FWHM) of 89 meV. It is suggested that the atomically flat epilayers may be powerfully used as transitive stratums to grow high-quality ZnO films suitable for the fabrication of optoelectronic devices.  相似文献   

4.
Chemical vapor deposition (CVD) is gradually emphasized as one promising method for nanomaterial formation. Such growth mechanism has been mainly investigated on basis of experiment. Due to large cost of the equipment of experiment and low level of current measurement, the comprehension about authentic effect of formation condition on properties of nanomaterial is limited in qualitative manner. Three quantitative items: flatness of primary deposition, adhesion between cluster and substrate, and degree of epitaxial growth were proposed to evaluate the property of thin film. In this simulation, three different cluster sizes of 203, 653, 1563 atoms with different velocities (0, 10, 100, 1000, 3000 m/s) were deposited on a Cu(0 0 1) substrate whose temperatures were set between 300 and 1000 K. Within one velocity range, not only the speed of epitaxial growth and adhesion between thin film and substrate were enhanced, but also the degree of epitaxy increased and the shape of thin film became more flat with velocity increasing. Moreover, the epitaxial growth became well as the temperature of substrate was raised within a certain range, and the degree of epitaxy of small cluster was larger than larger cluster. The results indicated that the property of thin film could be controlled if the effect of situations of process was made clear.  相似文献   

5.
The magnetic and structural properties of epitaxial Fe films grown on Si(1 1 1) are investigated by polarized neutron reflectometry (PNR) at room temperature. The influence of different types of interfaces, Fe/Si, Fe/FeSi2 and Au/Fe on the magnetic properties of Fe films deposited by molecular beam epitaxy onto Si(1 1 1) are characterized. We observe a drastic reduction of the magnetic moment in the entire Fe film deposited directly on the silicon substrate essentially due to strong Si interdiffusion throughout the whole Fe layer thickness. The use of a silicide FeSi2 template layer stops the interdiffusion and the value of the magnetic moment of the deposited Fe layer is close to its bulk value. We also evidence the asymmetric nature of the interfaces, Si/Fe and Fe/Si interfaces are magnetically very different. Finally, we show that the use of Au leads to an enhancement of the magnetization at the interface.  相似文献   

6.
CrSi2 nanocrystals (NC1) were grown by reactive deposition epitaxy of Cr at 550 °C. After deposition the Cr is localized in about 20-30 nm dots on the Si surface. The NCs were covered by silicon cap grown by molecular beam epitaxy at 700 °C. The redistribution of NCs in the silicon cap was investigated by transmission electron microscopy and atomic force microscopy. The NCs are partly localized at the deposition depth, and partly migrate near the surface. A new migration mechanism of the CrSi2 NCs is observed, they are transferred from the bulk toward the surface through nanopipes formed in the silicon cap. The redistribution of CrSi2 NCs strongly depends on Cr deposition rate and on the cap growth temperature.  相似文献   

7.
The growth of epitaxial GaN films on (0 0 0 1)-sapphire has been investigated using X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED). In order to investigate the mechanism of the growth in detail, we have focused on the nitridation of pre-deposited Ga layers (droplets) using ion beam-assisted molecular beam epitaxy (IBA-MBE). Comparative analysis of XPS core-level spectra and LEED patterns reveals, that nitride films nucleate as epitaxial GaN islands. The wetting of the surface by GaN proceeds via reactive spreading of metallic Ga, supplied from the droplets. The discussed growth model confirms, that excess of metallic Ga is beneficial for GaN nucleation.  相似文献   

8.
This study investigates the effect of annealing temperature on the Si0.8Ge0.2 epitaxial layers. The Si0.8Ge0.2 epitaxial layers were deposited by using ultrahigh vacuum chemical vapor deposition (UHVCVD) with different annealing temperatures (400-1000 °C). Various measurement technologies, including high-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM) and interfacial adhesion tester, were used to characterize the materials properties of the SiGe epilayers. The experimental results showed that the SiGe epilayers gradually reduced lattice-mismatch to the underlying substrate as annealing temperature increased (from 400 to 800 °C), which resulted from a high temperature enhancing interdiffusion between the epilayers and the underlying substrate. In addition, the average grain size of the SiGe films increased from 53.3 to 58 nm with increasing annealing temperature. The surface roughness in thin film annealed at 800 °C was 0.46 nm. Moreover, the interfacial adhesion strength increased from 476 ± 9 to 578 ± 12 kg/cm2 with increasing the annealing temperature.  相似文献   

9.
To compare the annealing effects on GaMnAs-doped with Zn (GaMnAs:Zn) and undoped GaMnAs (u-GaMnAs) epilayers, we grew GaMnAs thin films at 200 °C by molecular beam epitaxy (MBE) on GaAs substrates, and they were annealed at temperatures ranging from 220 °C to 380 °C for 100 min in air. These epilayers were characterized by high-resolution X-ray diffraction (XRD), electrical, and magnetic measurements. A maximum resistivity at temperatures Tm close to the Curie temperatures Tc was observed from the measurement of the temperature-dependent resistivity ρ(T) for both the GaMnAs:Zn and the u-GaMnAs samples. We found, however, that the maximum temperature Tm observed for GaMnAs:Zn epilayers increased with increasing annealing temperature, which was different from the result with the u-GaMnAs epilayers. The formation of GaAs:Zn and MnAs or Mn-Zn-As complexes with increasing annealing temperature is most likely responsible for the differences in appearance.  相似文献   

10.
The initial stages of iron silicide growth on the Si(1 0 0)2 × 1 surface during solid-phase synthesis were investigated by photoelectron spectroscopy using synchrotron radiation. The experiments were made on iron films of 1-50 monolayer (ML) thickness in the temperature range from room temperature to 750 °С. Our results support the existence of three stages in the Fe deposition on Si(1 0 0) at room temperature, which include formation of the Fe-Si solid solution, Fe3Si silicide and an iron film. The critical Fe dose necessary for the solid solution to be transformed to the silicide is found to be 5 ML. The solid-phase reaction was found to depend on the deposited metal dose. At 5 ML, the reaction begins at 60 °С, and the solid-phase synthesis leads to the formation of only metastable silicides (FeSi with the CsCl-type structure, γ-FeSi2 and α-FeSi2). A specific feature of this process is Si segregation on the silicide films. At a thickness of 15 ML and more, we observed only stable phases, namely, Fe3Si, ε-FeSi and β-FeSi2.  相似文献   

11.
Template-based nanoscale epitaxy has been explored to realize high-quality GaN on Si(1 1 1) substrates. We have employed polystyrene-based nanosphere lithography to form the nano-hole array patterns on GaN/Si(1 1 1) template and then, subsequent regrowth of GaN is carried out by metalorganic chemical vapor deposition (MOCVD). During the initial growth stage of GaN on such nanopatterned substrates, we have observed formation of nanoislands with hexagonal pyramid shape due to selective area epitaxy. With further epitaxial regrowth, these nanoislands coalesce and form continuous GaN film. The overgrown GaN on patterned and non-patterned regions is characterized by high-resolution X-ray diffraction (HRXRD) and high-spatial resolution optical spectroscopic methods. Micro-photoluminescence (PL), micro-Raman scattering and scanning electron microscopy (SEM) have been used to assess the microstructural and optical properties of GaN. Combined PL and Raman data analyses show improved optical quality when compared to GaN simultaneously grown on non-patterned bulk Si(1 1 1). Such thicker GaN templates would be useful to achieve III-nitride-based opto- and electronic devices integrated on Si substrates.  相似文献   

12.
The study is dedicated to some aspects of the controlled heteroepitaxial growth of nanoscaled ZnO structures and an investigation of their general and dimension mediated properties. ZnO nanostructures were synthesized by optimized MOCVD process via two growth approaches: (i) catalyst free self-organized growth of ZnO on Si substrates and (ii) ZnO heteroepitaxy on p-type hexagonal 4H-SiC substrates. The SiC substrate was prepared by sublimation epitaxy and served as a template for the ZnO epitaxial growth. The epitaxial growth of n-ZnO on p-SiC resulted in a regular matrix of well-faceted hexagonally shaped ZnO single crystals. The achievement of ZnO integration with Si encompasses controlled growth of vertically oriented nanosized ZnO pillars. The grown structures were characterized by transmission electron microscopy and microphotoluminescence. Low concentration of native defects due to a stoichiometry balance, advanced optical emission, (excitonic type near-band-edge emission and negligible defect related luminescence) and continuous interfaces (epitaxial relationship ZnO[0 0 0 1]/SiC[0 0 0 1]) are evidenced. The ZnO nanopillars were further probed as field emitters: the grown structures exhibits advanced field emission properties, which are explained in term of dimensionality and spatial uniformity of the nanopillars. The present results contribute to understanding and resolving growth and device related issues of ZnO as a functional nanostructured material.  相似文献   

13.
Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) transmission, and Hall effect measurements were performed to investigate the structural, optical, and electrical properties of as-grown and in situ-annealed Hg0.7Cd0.3Te epilayers grown on CdTe buffer layers by using molecular beam epitaxy. After the Hg0.7Cd0.3Te epilayers had been annealed in a Hg-cell flux atmosphere, the SEM images showed that the surface morphologies of the Hg0.7Cd0.3Te thin films were mirror-like with no indication of pinholes or defects, and the FTIR spectra showed that the transmission intensities had increased in comparison to that of the as-grown Hg0.7Cd0.3Te epilayer. Hall-effect measurements showed that n-Hg0.7Cd0.3Te epilayers were converted to p-Hg0.7Cd0.3Te epilayers. These results indicate that the surface, optical, and electrical properties of the Hg1 − xCdxTe epilayers are improved by annealing and that as-grown n-Hg1 − xCdxTe epilayers can be converted to p-Hg1 − xCdxTe epilayers by in situ annealing.  相似文献   

14.
The photoluminescence (PL) characteristics of GaAsSbN/GaAs epilayers grown by molecular beam epitaxy (MBE) are carefully investigated. The results show that antimony (Sb) incorporation into GaNAs material has less influence on the N-induced localization states. For the same N concentration, GaAsSbN material can reach an emission wavelength near 1.3 μm more easily than GaInNAs material. The rapid thermal annealing (RTA) experiment shows that the annealing induced rearrangement of atoms and related blueshift in GaAsSbN epilayers are smaller than those in GaNAs and GaInNAs epilayers. The GaAsSbN material can keep a longer emission wavelength near 1.3 μm-emission even after the annealing treatment. Raman spectroscopy analysis gives further insight into the structure stability of GaAsSbN material after annealing.  相似文献   

15.
We report spectroscopic ellipsometry studies in the energy range of 0.5-5 eV on samples of 1-10 bilayers of polymer and HgTe nanocrystals, which exhibit strong transitions at higher critical points in the dispersion relation. We show that the dispersion relation for nanocrystals can be modelled with the same concepts for critical points as used in semiconductor bulk optics. We find an energy shift of up to 0.4 eV of the critical points to higher energies compared to the HgTe bulk properties, caused by quantum confinement in the nanocrystals, which increases with decreasing nanocrystal size.  相似文献   

16.
Selected area electron diffraction pattern (SADP) and high-resolution transmission electron microscopy (HRTEM) measurements were carried out to investigate the existence and the atomic arrangement of microtwins in CdTe epilayers grown on GaAs (211) B substrates by using molecular beam epitaxy. The SADP results showed that an epitaxial relationship between the CdTe epilayer and the GaAs substrate was formed. The lattice of the CdTe (211) tilts about 2° with respect to the GaAs (211) B substrate about the CdTe [110]∥GaAs [110] common zone axis. The HRTEM images showed that microtwins were formed in the CdTe epilayers. A possible atomic arrangement of the microtwins is presented on the basis of the HRTEM result. The present observations can help to improve understanding of the microstructural properties in CdTe epilayers grown on GaAs substrates.  相似文献   

17.
Multilayered Ge nanocrystals embedded in SiOxGeNy films have been fabricated on Si substrate by a (Ge + SiO2)/SiOxGeNy superlattice approach, using a rf magnetron sputtering technique with a Ge + SiO2 composite target and subsequent thermal annealing in N2 ambient at 750 °C for 30 min. X-ray diffraction (XRD) measurement indicated the formation of Ge nanocrystals with an average size estimated to be 5.4 nm. Raman scattering spectra showed a peak of the Ge-Ge vibrational mode downward shifted to 299.4 cm−1, which was caused by quantum confinement of phonons in the Ge nanocrystals. Transmission electron microscopy (TEM) revealed that Ge nanocrystals were confined in (Ge + SiO2) layers. This superlattice approach significantly improved both the size uniformity of Ge nanocrystals and their uniformity of spacing on the ‘Z’ growth direction.  相似文献   

18.
Photoluminescence of Si nanocrystals passivated by different alkanes (hexane, octane, and tridecane) was studied at room temperature. It is shown that the emission band shape is not affected by the length of the carbon chain in the alkanes used for passivation. A pronounced fine structure of the photoluminescence band consisting of peaks separated by 150-160 meV was observed under resonant excitation. The structure is interpreted by predominant contribution from Si nanocrystal groups with particular stable size/shape existing in addition to the previously reported nanocrystals with “magic” numbers of Si atoms. The contribution of these stable nanocrystals is revealed using selective resonant photoexcitation to the higher energy states in the discrete energy spectrum of such nanocrystals.  相似文献   

19.
The optical properties of Nd-doped InGaAsP epilayers grown by liquid phase epitaxy (LPE) have been studied by photoluminescence and Raman scattering. The full width at half maximum (FWHM) of the photoluminescence peak has been found to decrease as the doping amount of Nd element increases. The narrowest value of the FWHM of PL peak is 7.5 meV, which is smaller by about 46% than that of the undoped InGaAsP and better than previous reports on similar composition layers. Using a spatial correlation model, we found that the asymmetric broadening of the lineshape of the Raman signal is not influenced by the Nd doping. We hence conclude that the introduction of the Nd element can greatly reduce the residual impurities of LPE-grown layers, but the Nd element is not incorporated into the epitaxial layers during the purification.  相似文献   

20.
High-vacuum electron-beam evaporation method is used for large area, metal-nucleated germanium (Ge) nanodots and nanocones on Si3N4/Si preparation. Nanodot and nanocone arrays with uniform size in bulk-quantity are synthesized using titanium (Ti) nanocrystals as nucleating center at 750 °C with different Ge deposition amount, respectively. The morphology evolution from nanodot to nanocone is studied by atomic force microscopy (AFM). The structure of the prepared sample is characterized by X-ray diffraction (XRD) and Raman scattering. Ge nanocones formed by this convenient fabrication process could have potential applications on nanoelectronics and vacuum electron field emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号