首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
紫外/臭氧改性法是一种操作简单、成本低廉的PDMS表面亲水改性方法。采用该方法对PDMS表面进行亲水改性,利用接触角测量仪对改性效果进行评价,并与PDMS无臭氧紫外法进行了比较。测试表明PDMS表面经紫外/臭氧法处理12小时后,表面接触角达到60°左右,在空气中放置两周后仍保持较好的亲水性。其改性机理可以通过多种表征手段进行分析。红外光谱测试可以看出,PDMS在经过紫外/臭氧改性后,其表面官能团变化明显,随改性时间延长,疏水基团—CH3逐渐减少,亲水基团Si—OH和—OH逐步增加,二氧化硅典型红外光谱峰也同时出现。通过扫描电镜和能谱测试可以看出,PDMS表面经过改性产生了二氧化硅为主的硅的氧化物。综合上述结果,紫外/臭氧处理法能够使PDMS表面亲水基团增多,同时生成类玻璃态SiOx薄层,既改善了PDMS表面的亲水性,又阻止了PDMS表面疏水性的完全恢复,亲水性可以长时间保持。  相似文献   

2.
Si/Ge multilayer structures have been grown by solid source molecular beam epitaxy (MBE) on Si (1 1 1) and (1 0 0) substrates and were characterized by high-resolution X-ray diffraction (XRD), atomic force microscopy (AFM), high-depth-resolution secondary ion mass spectroscopy (SIMS) and cross-section high-resolution transmission electron microscopy (HRTEM). A reasonably good agreement has been obtained for layer thickness, interfacial structure and diffusion between SIMS and HRTEM measurements. Epitaxial growth and crystalline nature of the individual layer have been probed using cross-sectional HRTEM and XRD measurements. Surface and interface morphological studies by AFM and HRTEM show island-like growth of both Si and Ge nanostructures.  相似文献   

3.
《Composite Interfaces》2013,20(3):171-186
A comparative study of interfacial effects due to styrene-butadiene-based triblock copolymer (SEBS) addition and to corona treatment has been investigated for blends of polyethylene (PE) and polystyrene (PS). Blends of PS/PE covering a wide range of weight composition have been prepared in the molten state. Scanning electron microscopy demonstrated that moderate amounts of SEBS copolymer addition (2-5%) resulted in finer particle dispersion and in better interfacial adhesion between PE and PS phases. Tensile strength and elongation at break were also significantly improved. In the case of corona treatment of both polyethylene and polystyrene, the tensile strength of the blends increased while their elongation at break remained almost unchanged. The same trend was found when small amounts of corona-treated blend (5%) were added to the non-modified PS/PE blends. Rheological measurements revealed that corona treatment resulted in a decrease of dynamic shear viscosity of both PE and PS. From a view-point of morphological and mechanical properties, the triblock copolymer was found to be the more efficient modifier. Nevertheless, much higher tensile strengths, but lower elongations at break were obtained when the blends were modified by corona-treated SEBS copolymer. The results suggest that a combination of the two modification methods may be a promising route to enhance performance properties in the immiscible PS/PE system.  相似文献   

4.
Surface film properties of the homopolymers polystyrene (PS), poly(methyl methacrylate) (PMMA), poly(butyl methacrylate) (PBMA) and the copolymer poly(methyl methacrylate)-co-poly(butyl methacrylate) (PMMA-co-PBMA) and their blends with PS have been examined by atomic force microscopy (AFM) and contact angle measurements. The total and the Lifshitz-van der Waals, acid and base components of the surface free energy together with the work of adhesion and its components, the cohesive energy density and the solubility parameters of the homopolymer, copolymer and blend films were determined. Films of about 3 μm were considered. The results are discussed in terms of surface migration mechanisms based on surface free energy and solubilities of the polymers in the solvent, toluene in this paper. AFM imaging and contact angles revealed surface enrichment at the air polymer interface of PBMA for both the PS/PBMA blend and the copolymer PMMA-co-PBMA, whereas the PS/PMMA and PS/PMMA-co-PBMA blend film surfaces show island-like phase-separated structure of typical size 27.4-86.5 nm in diameter and 6.9-15.6 nm in height for PS/PMMA, while for PS/ PMMA-co-PBMA film surface the typical size is 49.6-153.3 nm in diameter and 1.6-14.2 nm in height.  相似文献   

5.
Surface adhesion properties are important to various applications of graphene-based materials. Atomic force microscopy is powerful to study the adhesion properties of samples by measuring the forces on the colloidal sphere tip as it approaches and retracts from the surface. In this paper we have measured the adhesion force between the colloid probe and the surface of graphene (graphene oxide) nanosheet. The results revealed that the adhesion force on graphene and graphene oxide surface were 66.3 and 170.6 nN, respectively. It was found the adhesion force was mainly determined by the water meniscus, which was related to the surface contact angle of samples.  相似文献   

6.
Poly(methyl methacrylate) (PMMA) and its graft copolymer of polybutadiene were used as the macromolecular surface modifiers of polypropylene. The enrichment and diffusion of the modifiers onto the surface of polypropylene blends were investigated using FTIR-ATR, CDA and SEM. It has been found that the selective aggregation of the modifier component on the surface of polypropylene was mainly affected by the content, molecular weight and size of the segregated domains. Lower content and higher surface energy die were in favor of the enrichment of the additive. PMMA with higher molecular weight showed larger domain phase and lower diffusion velocity which resulted in less enrichment on the surface of PP blends.  相似文献   

7.
In this study, flexible piezoelectric nanogenerators (PNGs) were fabricated using the composite fibers which were prepared by combining polyvinylidene difluoride (PVDF) and nickel ferrite (NiFe2O4) nanoparticles (NPs) at a concentration of 1, 3, 5, 7, and 10 wt%. The piezoelectric properties of PNG indicate that the PVDF/NiFe2O4 fibers containing NiFe2O4 NPs at a concentration of 10 wt% has a higher power efficiency of 5.4% at 20 Hz compared to that of the pure PVDF fibers at 10 Hz, under the same resistive load of 2.5 MΩ. The magnetoelectric properties of PNG show that the PNG with PVDF+7 wt%NiFe2O4 supplied the highest electrical power of 0.40 μW under a resistive load of 750KΩ while it reached a maximum voltage value of 17.50 mV at the same load resistive load for a low-level magnetic field of 50 Hz frequency.  相似文献   

8.
Huagang Ni 《Surface science》2007,601(6):1560-1565
The relationship between the chemical structure of a block copolymer and its surface structure and properties is very important for the careful design of its outer surface layer. For this paper, a series of poly(styrene-b-isoprene-b-styrene) triblock copolymers (SIS), with different chemical structures in the polyisoprene block chain, were synthesized by anionic polymerization and their dynamic wetting behaviors were investigated. The dynamic contact angles of the polyisoprene homopolymer (PI) and the SIS were almost the same when the PI and the corresponding block in the SIS had similar chemical structures. The receding contact angle (θr) of SIS depended on the microstructure of the PI block chain, however, the advancing contact angles (θa) were almost the same regardless of the PI’s chemical structures. The receding contact angle (θr) of SIS containing 3,4-PI was far higher than that of SIS with 1,4-PI. Meanwhile, it gradually approached that of SIS with 1,4-PI as the of 3,4-PI content decreased or as the local temperature increased. Contact angle measurement is one of the most sensitive methods for providing information on the outer few angstroms of a polymer’s surface. Therefore, by designing SIS with different chemical structures in the PI block, it was confirmed that the properties and structure of the outermost layer of the SIS were controlled primarily by the PI block’s chemical structure. This demonstrates the possibility to modulate the surface structure and properties of SIS by adjusting the chemical structure of polyisoprene segment.  相似文献   

9.
《Composite Interfaces》2013,20(8-9):819-830
In this work, the effect of composition, particle size and particle size ratio on the tensile properties of well-characterized hard/soft latex blends was investigated. Four blends of hard/soft latices, with varying particle sizes (either small or large), and volume fractions of 100/0, 80/20, 60/40, 50/50, 40/60, 20/80 and 0/100 were studied. The stress at break increased and the strain at break decreased as the amount of hard particles in the blend increased. A simple model, introduced by Pukanszky for filled polymers and polymer blends, proved to be a very useful tool for evaluating the tensile properties of the latex blends. Parameter B of the model could be related to the specific surface of the dispersed hard particles and the particle size ratio. Increasing the specific surface of the dispersed hard particles resulted in an increase in parameter B. The influence of particle size ratio on parameter B was shown to depend on the formation of aggregates.  相似文献   

10.
Because of the surfaces of wood-plastic composite (WPC) materials are enriched in polymers of low surface energy, they exhibit low adhesion properties. UV/ozone is proposed as surface treatment for increasing the surface energy and adhesion of WPC materials made with different polymers (polyethylene, polypropylene and polyvinyl chloride). UV lamp-WPC surface distance and time of UV exposure were varied for optimizing UV/ozone treatment of WPC, and UV dose used ranged between 2.02 × 10?14 and 5.05 × 10?12 J·s/m2. UV/ozone treatment created new carbon-oxygen polar groups in WPC surfaces and increased their surface energy, mainly their polar component. Furthermore, ablation of the outermost WPC surface was produced, more noticeably by reducing the distance between WPC surface and UV lamp and by increasing the duration of the treatment. Noticeable increase in 180° peel adhesion was obtained in the joints made with UV/ozone treated WPC at 10–30 mm distance during 1–5 min (i.e., UV dose between 5.61 × 10?14 and 2.53 × 10?12 J·s/m2). Although 180° peel strength of joints made with acrylic adhesive tape and UV/ozone treated WPC for 10 min and 10 mm distance (UV dose: 5.05 × 10?12 J·s/m2) was not increased because of dominant effect of ablation over creation of polar groups, the cross-hatch adhesion to different coatings was highly improved, irrespective of the polymer used and the wood content of WPC; however, the surface modifications and adhesion of UV/ozone treated WPC were more marked when its wood content was higher and by using UV dose between 0.10 × 10?12 and 2.53 × 10?12 J·s/m2.  相似文献   

11.
ABSTRACT

The effects of multiwall carbon nanotube (CNT) inclusions on the crystalline structure of poly(vinylidene fluoride) (PVDF), and on the dielectric properties of PVDF/CNT nanocomposites (NCs), prepared by melt mixing, were investigated by employing X-ray diffraction, differential scanning calorimetry, and dielectric spectroscopy techniques. Our results imply that, in the NCs, the formation of β-phase crystals depends on specific compression treatment in the melt and fast cooling. Dielectric measurements on NCs, with CNT concentrations below the electrical percolation threshold, reveal that the dielectric strength of the two relaxation processes in the amorphous phase and dielectric permittivity, ?′, measured within the broad temperature range from ?150 °C to 60 °C, increase strongly with increasing CNT concentration. This enhancement of amorphous PVDF polarizability has been attributed to the increase of the local electric field, due to local polarization generated at the surface of conductive inclusions/CNT clusters.  相似文献   

12.
UV–visible, infrared and Raman spectra, together with thermal properties, were measured for glasses from the system Bi2O3–B2O3–V2O5 before and after successive gamma irradiations. The UV–visible spectrum of the undoped glass before irradiation reveals five UV bands at 210, 275, 310, 350 nm, an intense band at 380 nm and a visible band at 420 nm due to the possible combined presence of trace iron impurities and Bi3+ ions. The V-doped glasses reveal six UV bands and two visible bands, probably arising from vanadium ions in three possible valencies, V3+, V4+ and V5+, beside that due to trace iron impurity beside Bi3+ ions. The spectra reveal an obvious resistance of the glasses to successive gamma irradiation. The Raman and infrared spectra show characteristic absorption bands, which indicate the sharing of Bi3+ ions as glass-forming (BiO6) octahedral units together with the presence of various groups of the borate network.  相似文献   

13.
Tris-(8-hydroxyquinoline)aluminum (Alq3) is a widely used light emitting material. It is also used as an electron transporting layer in organic light emitting devices (OLEDs). Degradation is, however, a major problem in these devices. The device performance is affected by parameters such as air, moisture and light exposure [1,2]. In this work the effect of photon degradation of Alq3 in air is investigated. Alq3 phosphor powder was synthesized using a co-precipitation method and recrystalized in acetone. The structure of the sample was determined by using x-ray diffraction (XRD). The averaging particle size estimated from the broadened XRD peaks using Scherrer's equation was 40±4 nm in diameter. The excitation photoluminescence data that was collected correspond well to the absorption data. To study the photon degradation, the sample was irradiated with an UV lamp for ∼330h. The emission data was collected and the change in photoluminescence intensity with time was monitored.  相似文献   

14.
This paper describes the structural, morphological and optical properties of the nano-composite of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and quantum dots (QDs). The ZnSe and CdSe QDs have been synthesized, with the aid of Mercaptoacetic acid (MAA), by a colloidal method with an average size of ~5 to 7 nm. QDs have been embedded in PEDOT:PSS using a simple solution processing approach and has been deposited as thin films by spin coating technique. The QDs embedded PEDOT:PSS enhances the light absorption spectra of samples, prominently in terms of absorption intensity which may consequently improve sensitivity of the optoelectronic devices.  相似文献   

15.
A detailed study of some physical properties of pure PMMA (polymethyl methacrylate) film and MMA/Ani (methyl methacrylate/aniline) films is presented. Films of thicknesses ranged from 0.04 to 0.72 mm for MMA/Ani were prepared while it is 0.68 mm for PMMA. The structure of the sample is analyzed by X-ray diffraction technique and is found to be amorphous (PMMA) and partially crystalline (MMA/Ani). Ultra violet–visible electronic absorption spectra measurements were analyzed to obtain some important parameters such as molar extrication coefficient, oscillator strength, dipole strength and having good thermal stability (Td >300 °C) was also reported. TGA studies revealed that the thermal stability of polymethyl methacrylate, prepared by radiation polymerization of methyl methacrylate, improved after copolymerization with aniline. Also, optical behavior of film samples was analyzed by obtaining transmission spectra, in the wavelength range of 200–1100 nm. It was found that all studied samples lead to the appearance of a second edge at lower photon energy due to the formation of the induced energy states. From the intensity of absorption interband transitions (B and Q) which are assigned as type ππ* for both PMMA and MMA/Ani films, the energy gaps Eg1 and Eg2 were calculated respectively. The optical conductivity (σ) was determined and it was found that with the increase of thicknesses optical energy gap decreases monotonically and the refractive index increases.  相似文献   

16.
TiC-supported size- and shape-selected Au nanoparticles with well defined interparticle distances were synthesized by diblock copolymer encapsulation. Atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD) have been used to investigate the correlation between the nanocatalyst morphological/electronic structure and its chemical reactivity. Using the low-temperature oxidation of CO as a model reaction, our TPD results showed an enhancement of the catalytic activity with decreasing particle size. Two desorption features were observed and assigned to kinks/steps in the gold surface and the Au-TiC interface. The role of the interparticle distance on the activity is discussed. AFM measurements showed drastic morphological changes (Ostwald ripening) on the nanoparticles after CO oxidation when the initial interparticle distance was small (∼30 nm). However, no sintering was observed for Au nanoparticles more widely spaced (∼80 nm).  相似文献   

17.
In this study, the optical properties as well as mechanical and electrical degradation of low-density polyethylene (LDPE)/polypropylene fiber (PP fiber) (10–50% PP fiber), polypropylene (PP)/PP fiber (10–50% PP fiber), and LDPE/diamond (0.1–3% diamond) blends, which are prepared by hot pressing method, with changing thicknesses ranging from 30 to 225 μm, are compared. The spectra, in the wavelength range 200–2500 nm, are examined. Based on optical absorption spectra obtained, Tauc graphs are plotted. Determined values of the direct optical energy gap (E d opt ), the indirect optical energy gap (E i opt ), the width of the band (ΔE), and ultraviolet transmittance (TUV) are listed. The direct E d opt and indirect E i opt values for organic blends are in the range of 3.10–3.17 eV and 1.52–2.99 eV; for inorganic blends they are 1.80–4.13 eV and 1.55–4.7 eV respectively. The electrical strength (ε) and the mechanical tension (σ) have been investigated, and graphs (the dependence of the electrical life time log τε on ε) are given. The experimental results are analyzed from the viewpoint of the validity of the thermofluctuation theory. LDPE and LDPE/0.5% diamond composite parameters consecutively changed: σ from 68 to 82 MPa, ε from 60·106 to 85·106 V/m, mechanical lifetime τσ from 10 to 1.5·105 sec, electrical lifetime τε from 2· 103 to 2·105 sec, and structure-sensitive parameters γ and χ — from 1.48 to 1.18 (J)MPa/mole and from 0.97 to 0.70 (J)Vm−1/mole respectively. The values of mechanical and electrical durability were observed to increase by 20 and 41%, respectively, for LDPE/0.5% diamond composite. Published in Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 5, pp. 677–683, September–October, 2007.  相似文献   

18.
19.
The effect of surface modification of polypropylene (PP) film is induced by CO2 plasma in this study. The change in chemical structures on the surface of PP film is characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR). The polarity of modified surface of PP film is investigated by contact angle method. The compatibilization of interfaces between polypropylene and polystyrene phases in incompatible blends is studied by the treatment of plasma of CO2. Transition layer thickness is measured by small angle light scattering (SALS).  相似文献   

20.
杨兴旺  雷新宪 《光谱实验室》2010,27(3):1164-1167
以罗丹明B掺杂的SiO2球为核,通过化学还原的方法制备了二氧化硅/银核壳结构复合纳米粒子。采用透射电镜(TEM)、紫外-可见-近红外(UV-Vis-NIR)分光光度计和荧光分光光度计对二氧化硅/银核壳结构纳米粒子的表面形貌、表面等离子共振和表面荧光增强特性进行了研究和表征。结果表明,二氧化硅/银核壳结构纳米粒子的表面等离子共振峰具有明显的可调谐性,且其表面荧光增强强烈依赖于银壳层的表面等离子共振,随银壳层厚度的增大而增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号