首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pigmented coatings with high reflectivity against solar irradiation can be used to control unwanted thermal heating that occurs as materials absorb sunlight such as heat in buildings that increases cooling loads. However, these surfaces produce glare that is unpleasant to the eye, and the coatings themselves can damage the appearance of the coated object. We introduce a new optimization method that embraces both thermal and aesthetic requirements. Our proposed coatings maximize the reflectivity of the near infrared (NIR) region to reduce thermal heating, while for aesthetic appeal they also minimize the visible (VIS) reflected energy received by human eyes, especially at wavelengths where eye sensitivity is high. The optimization parameter is defined as the ratio of the total reflected energy in the NIR region to that in the VIS region weighted by human eye sensitivity. Titanium dioxide is used as the pigment, and databases of its radiative properties are constructed using the Mie theory. To compute reflectivity, nongray radiative heat transfer in an anisotropic scattering monosized pigmented layer, with independent scattering, including direct and diffuse solar irradiations, is analyzed using radiation element method by ray emission model (REM2). Colors are calculated and optimization parameter is evaluated by using spectral reflectivity. Finally, the optimum values of particle size, volume fraction of pigment, and coating thickness are obtained.  相似文献   

2.
The influence of synthesis temperature on the granulometric composition of a Ba0.65Sr0.35Ti O3 pigment and the optical properties and radiation resistance of pigment-based coatings has been analyzed. It has been found that a rise in synthesis temperature decreases the sizes of pigment particles, deteriorates the reflectance of the coatings, and enhances their radiation resistance.  相似文献   

3.
X‐ray radiolysis of a Cu(CH3COO)2 solution was observed to produce caltrop‐shaped particles of cupric oxide (CuO, Cu2O), which were characterized using high‐resolution scanning electron microscopy and micro‐Raman spectrometry. X‐ray irradiation from a synchrotron source drove the room‐temperature synthesis of submicrometer‐ and micrometer‐scale cupric oxide caltrop particles from an aqueous Cu(CH3COO)2 solution spiked with ethanol. The size of the caltrop particles depended on the ratio of ethanol in the stock solution and the surface of the substrate. The results indicated that there were several synthetic routes to obtain caltrop particles, each associated with electron donation. The technique of X‐ray irradiation enables the rapid synthesis of caltrop cupric oxide particles compared with conventional synthetic methods.  相似文献   

4.
Fabrication of cuprous and cupric oxide thin films by heat treatment   总被引:1,自引:0,他引:1  
Cuprous oxide (Cu2O) and cupric oxide (CuO) thin films were prepared by thermal oxidation of copper films coated on indium tin oxide (ITO) glass and non-alkaline glass substrates. The formation of Cu2O and CuO was controlled by varying oxidation conditions such as, oxygen partial pressure, heat treatment temperature, and oxidation time. The microstructure, crystal direction, and optical properties of copper oxide films were measured with X-ray diffraction, atomic force microscopy, and optical spectroscopy. The results indicated that the phase-pure Cu2O and CuO films were produced in the oxidation process. Optical transmittance and reflectance spectra of Cu2O and CuO clearly exhibited distinct characteristics related to their phases. The electrical properties indicated that these films formed ohmic contacts with Cu and ITO electrode materials. Multilayers of Cu2O/CuO were fabricated by choosing the oxidation sequence. The experimental results in this paper suggest that the thermal oxidation method can be employed to fabricate device quality Cu2O and CuO films that are up to 200–300 nm thick.  相似文献   

5.
Nanostructured copper (II) oxide was formed on clean copper foil at room temperature using activated oxygen produced by RF discharge. CuO particles of approximately 10-20 nm were observed on the surface by Scanning Tunneling Microscopy (STM). The copper states and oxygen species of the model cupric oxide were studied by means of X-ray Photoelectron Spectroscopy (XPS). These oxide particles demonstrated abnormally high reactivity with carbon monoxide (CO) at temperatures below 100 °C. The XPS data showed that the interaction of CO with the nanostructured cupric oxide resulted in reduction of the CuO particles to Cu2O species. The reactivity of the nanostructured cupric oxide to CO was studied at 80 °C using XPS in step-by-step mode. The initial reactivity was estimated to be 5 × 10−5 and was steadily reduced down to 5 × 10−9 as the exposure was increased. O1s spectral analysis allowed us to propose that the high initial reactivity was caused by the presence of non-lattice oxygen states on the surface of the nanostructured CuO. We established that reoxidation of the partially reduced nanostructured cupric oxide by molecular oxygen O2 restored the highly reactive oxygen form on the surface. These results allowed us to propose that the nanostructured cupric oxide could be used for low temperature catalytic CO oxidation. Some hypotheses concerning the nature of the non-lattice oxygen species with high reactivity are also discussed.  相似文献   

6.
Investigations of the abnormal magnetic properties of cupric oxide reveal discrepancies between both experimental results and theoretical explanations. Through iron-doping cupric oxide by ball-milling and thermal treatments we have been able to obtain Mössbauer results that are an experimental evidence of semi-disorder. The magnetic hyperfine field of the Cu0.995Fe0.005O solid solution displays a spin-glass-like thermal dependence that undergoes two transitions, one at about 150 K, that can be assigned to the long-range ordering of the cupric oxide spins, and the second one at some temperature between 4.2 and 15 K, that exposes either the freezing of the Fe3+ spins into a local canted state or of magnetic clusters in the CuO matrix.  相似文献   

7.
The diffuse reflectance spectrum of cupric oxide (GuO) powder in the region 300–1000 mμ. has already been studied1,2. In the present communication, the diffuse reflectance spectra of both pure and diluted cupric oxide powder samples have been reported. In the present work, the region of investigation has also been extended down to 200 mμ.  相似文献   

8.
本文讨论了激活良好的氧化铯膜中逐次加入银后在可见光和近红外范围内玻璃基底一侧和真空一侧的反射率Rf,R和透射率T的变化,发现R随银量增加而增加,而Rf随银量的增加先是变小而后增大。薄膜的光吸收和银粒的光吸收随银量的增加而增加,它的光电发射随银量的增加先是上升而后下降。本文提出银粒分布不均匀的模型可以对这些现象进行解释。 关键词:  相似文献   

9.
传感器入瞳处接收到的中红外波段(3~5 μm)能量包含反射的太阳能量与地物自身的发射能量。通常该波段反射的太阳能量很弱,但在海面太阳耀斑区等特定情况下,被中红外通道探测到的反射太阳能量是比较可观的,且其对大气影响的敏感性较低,同时,对于搭载有在轨定标系统的卫星传感器,使用黑体定标后的中红外波段的在轨辐射性能相当稳定的。因此,考虑将中红外波段的海面耀斑区反射率作为用于反射太阳波段交叉定标的基准。基于这个想法,构建了改进的、适用于VIIRS(visible infrared imaging radiometer)中红外波段的非线性劈窗模型来计算南印度洋海面耀斑区中红外反射率。首先统计得到VIIRS M12和M13波段海面反射率的限定关系,然后使用非线性劈窗算法模拟计算海面反射率,模拟模型的不确定度为0.83%。在此基础上使用VIIRS的M12波段(中心波长为3.697 μm)太阳耀斑区数据计算选取的样本区的海面反射率。然后使用两种方法对反射率精度进行验证,精度分别为0.29%和0.23%,假设M12和M13波段海面反射率相等的反射率计算结果精度分别为2.48%和1.03%。该计算模型大大提高了精度,说明该模型用于VIIRS M12中红外波段计算海洋耀斑区反射率是有效可行的,其精度能够满足中红外波段海面反射率作为波段间定标基准的需求。  相似文献   

10.
Iron oxide nanoparticles of diameter 14 nm were synthesized by applying Pt seed-assisted heterogeneous thermal decomposition of Fe(CO)5 in a two-stage procedure. The intense heating treatment resulted in a remarkable mean volume increment compared to previous studies. This method is able to control the nanoparticle mean diameter, keeping the demand for thermal energy at low levels. High-resolution electron microscopy images and the corresponding electron diffraction patterns revealed the appearance of a FePt3 core in each nanoparticle, surrounded by highly crystallized inverse spinel Fe3O4 formed after atmospheric oxidation, as shown by a combination of X-ray diffraction and chemical analysis. Magnetic measurements indicated that the presence of Pt-rich core does not cause any visible modification to the values of saturation magnetization and anisotropy constant of nanoparticles, compared to homogeneously nucleated iron oxide particles of the same size.  相似文献   

11.
Well-dispersed cupric oxide (CuO) nanoparticles with the size from 10 to 100 nm were successfully synthesized by thermal decomposition of CuC2O4 precursor at 400 °C. The prepared CuO nanoparticles of different sizes used as anode materials for Li ion battery all exhibit high electrochemical capacity at the first discharge. However, with the particles size changing, an interesting phenomenon appears. That is, the larger size of the particles is, the discharge capacity of the first time smaller is, while that of the second time is larger. At the same time, the mechanism of the above phenomenon is discussed in this paper. Surprisingly, we have synthesized the copper nanoparticles with different sizes by the CuO of different sizes as the electrodes.  相似文献   

12.
A new approach in designing pigmented coatings considering both visual and thermal concerns was introduced by authors in previous works. The objective was to design a pigmented coating with dark appearance which can stay cool while exposed to sunlight. This behavior can be achieved by coating a typical black substrate with a pigmented coating with controlled size and concentration of particles and coating thickness. In present work, the spectral behaviour of polydisperse TiO2 pigmented coatings was studied. The radiative properties of polydisperse TiO2 powders were evaluated and the radiative transfer in the pigmented coating was modelled using the radiation element method by ray emission model (REM2). The effects of particles size distribution on spectral reflectivity, optimization parameter, and color coordinates were discussed. The results of numerical calculation were validated by experimental reflectivity measurements of several TiO2 pigmented coating samples made from two different TiO2 powders with different size distributions of particles. The results show that our model can reasonably predict the spectral reflectivity of TiO2 pigmented coating samples. Moreover, the results of optimized monodisperse TiO2 pigmented coatings were again validated.  相似文献   

13.
A complete optical characterization in the visible region of thin copper oxide films has been performed by ellipsometry. Copper oxide films of various thicknesses were grown on thick copper films by low temperature thermal oxidation at 125 °C in air for different time intervals. The thickness and optical constants of the copper oxide films were determined in the visible region by ellipsometric measurements. It was found that a linear time law is valid for the oxide growth in air at 125 °C. The spectral behaviour of the optical constants and the value of the band gap in the oxide films determined by ellipsometry in this study are in agreement with the behaviour of those of Cu2O, which have been obtained elsewhere through reflectance and transmittance methods. The band gap of copper oxide, determined from the spectral behaviour of the absorption coefficient was about 2 eV, which is the generally accepted value for Cu2O. It was therefore concluded that the oxide composition of the surface film grown on copper is in the form of Cu2O (cuprous oxide). It was also shown that the reflectance spectra of the copper oxide–copper structures exhibit behaviour expected from a single layer antireflection coating of Cu2O on Cu. Received: 19 July 2001 / Accepted: 27 July 2001 / Published online: 17 October 2001  相似文献   

14.
Diffuse reflectance spectra of paint coatings with different pigment concentrations, normally illuminated with unpolarized radiation, have been measured. A four-flux radiative transfer approach is used to model the diffuse reflectance of TiO2 (rutile) pigmented coatings through the solar spectral range. The spectral dependence of the average pathlength parameter and of the forward scattering ratio for diffuse radiation, are explicitly incorporated into this four-flux model from two novel approximations. The size distribution of the pigments has been taken into account to obtain the averages of the four-flux parameters: scattering and absorption cross sections, forward scattering ratios for collimated and isotropic diffuse radiation, and coefficients involved in the expansion of the single particle phase function in terms of Legendre polynomials.  相似文献   

15.
Nanoporous ZnO/SiO2 bilayer coatings were prepared on the surface of glass substrates via sol-gel dip-coating process. The structural, morphological and optical properties of the coatings were characterized. The refractive indices of ZnO layer and SiO2 layer are 1.34 and 1.21 at 550 nm, respectively. The transmittance and reflectance spectra of the coatings were investigated and the broadband antireflection performance of the bilayer structure was determined over the solar spectrum. The solar transmittances in the range of 300-1200 nm and 1200-2500 nm are increased by 6.5% and 6.2%, respectively. The improvement of transmittance is attributed to the destructive interference of light reflected from interfaces between the different refractive-index layers with an optimized thickness. Such antireflection coatings of ZnO/SiO2 provide a promising route for solar energy applications.  相似文献   

16.
Advances in materials performance often require the development of composite system. In the present investigation, SiO2-reinforced nickel composite coatings were deposited on a mild steel substrate using direct current electrodeposition process employing a nickel acetate bath. Surface morphology, composition, microstructure and crystal orientation of the Ni and Ni-SiO2 nanocomposite coatings were investigated by scanning electron microscope, energy dispersive X-ray spectroscopy and X-ray diffraction analysis, respectively. The effect of incorporation of SiO2 particles in the Ni nanocomposite coating on the microhardness and corrosion behaviour has been evaluated. Smooth composite deposits containing well-distributed silicon oxide particles were obtained. The preferred growth process of the nickel matrix in crystallographic directions <111>, <200> and <220> is strongly influenced by SiO2 nanoparticles. The average crystallite size was calculated by using X-ray diffraction analysis and it was ~23 nm for electrodeposited nickel and ~21 nm for Ni-SiO2 nanocomposite coatings. The crystallite structure was fcc for electrodeposited nickel and Ni-SiO2 nanocomposite coatings. The incorporation of SiO2 particles into the Ni matrices was found to improve corrosion resistance of pure Ni coatings. The corrosion potential (E corr) in the case of Ni-SiO2 nanocomposite coatings had shown a negative shift, confirming the cathodic protective nature of the coating. The Ni-SiO2 composite coatings have exhibited significantly improved microhardness (615 HV) compared to pure nickel coatings (265 HV)  相似文献   

17.
Thin films of Cu2S on opaque gold layers and quartz substrates at the temperature of 393 K were deposited by a thermal evaporation technique. The surface morphology of the Cu2S thin films at different thicknesses is investigated by AFM. It is seen that all the films are composed of highly coordinated spherical nano-sized particles well adhered to the substrate. The transmittance and reflectance spectra of Cu2S thin films on the quartz substrate were recorded by a UV–visible spectrophotometer. The results show that the thermally evaporated Cu2S thin films have the characteristic transmittance and reflectance suitable for optoelectronic applications. The stoichiometry and surface morphology of a grown Cu2S thin film were confirmed by energy-dispersive X-ray spectroscopy (EDAX) and scanning electron microscopy (SEM), respectively. The dependence of the refractive index and the extinction coefficient on the photon energy for both the surface film and the opaque gold layer have been determined by ellipsometry. From the spectral behaviour of the absorption coefficient at two distinct absorption regions, a dual-band scheme of optical absorption for a Cu2S thin film is described. The indirect and direct edges of Cu2S are found to be about at 0.91 eV and 2.68 eV, respectively.  相似文献   

18.
Cobalt Sulfophthalocyanine (CoSPc) sensitized TiO2 sol samples were prepared through a Sol-Gel method using Cobalt Sulfophthalocyanine as a sensitizer. Loading and modified floating photocatalyst was prepared by hydrothermal method using fly-ash cenospheres as a carrier. The properties of the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and UV-vis diffuse reflectance spectrum (DRS). Photocatalytic activity was studied by degrading wastewater of methylene blue under visible light. The results indicate that the fly-ash cenospheres are covered by modified TiO2 film which composed of the anatase, brookite and rutile misch crystal phase. CoSPc/TiO2/fly-ash cenospheres samples have good catalytic activity under visible light, and have strong absorbency during 600-700 nm. The sensitization of CoSPc can enhance visible light catalytic activity of TiO2/fly-ash cenospheres. The degradation rate of methylene blue reaches 73.36% in 180 min under the visible light illumination. But too much CoSPc can decrease its catalytic activity.  相似文献   

19.
A method for finding the optimum sizes of pigment particles, their volume concentration, and the paint coating thickness that provide the covering power and the required coloristic characteristics of reflected light for the minimum flow rate of pigments is based on using a four-flow approximation of the solution to the equation of radiation transfer in dispersion media and is extended to coatings of complex composition. The capabilities of the method are demonstrated by examples of coatings of mixtures of hematite and rutile particles in a binder with n=1.5 for variations of the modal size and the half-width of the size distribution of the pigment particles. B. I. Stepanov Institute of Physics, Academy of Sciences of Belarus, 70, F. Skorina Ave., Minsk, 220072, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 1, pp. 90–96, January–February, 1997.  相似文献   

20.
受太阳辐射、气象等外界不可控因素的影响,建筑反射隔热涂料的反射隔热性能会逐渐减损。建筑反射隔热涂料性能在时间维度的变化是评价建筑在特定时段内节能效果的关键基础数据,明确建筑反射隔热涂料性能在时间维度的减损规律具有重要的现实与理论意义。建筑反射隔热涂料的反射、吸收特征是其性能的直观体现,借助高光谱技术定量分析涂料反射、吸收特征可正确揭示涂料性能在时间尺度的变化特征。为研究分析建筑反射隔热涂料性能在时间尺度上的减损规律,该研究利用高光谱技术,联合进行室内与外置实验采集涂料样本不同时期的光谱数据,并结合吸收峰深度、图谱分析法等光谱处理方法,定量分析涂料光谱反射特征、吸收特征在时间维度的变化特征,以研究分析涂料光谱反射率在外界环境影响下的减损规律。研究结论如下:(1)在350~2 250 nm波段区间内,建筑反射隔热涂料的光谱反射率随时间的增加而降低;光谱反射率的降低幅度在1月—5月内呈增加趋势,而在5月—10月内呈递减规律,且光谱反射率在可见光区间的降低幅度明显高于近红外区域。(2)建筑反射隔热涂料的吸收峰深度随时间的增加而降低,降低幅度在0~0.163范围内。(3)涂料厚度对涂料光谱反射率...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号