共查询到20条相似文献,搜索用时 0 毫秒
1.
Density functional theory calculations by using both generalized gradient approximation (GGA) method and the GGA with considering strong correlation effect (GGA+U) for various Eu concentrations x (=0.00, 0.25, 0.50, and 0.75). It is found that after the Europium incorporation, a new localized band appears between the valence and conduction bands, which corresponds to the majority spin of Eu-4f states, the strong correlation effects is very important for the 4f orbit of the Eu atom in ZnEuS. We find that Zn1−xEuxS exhibits a half-metallic characteristic, and the ferromagnetic state is more favorable in energy than the antiferromagnetic state. Structural properties are determined from the total energy calculations, and we discuss the electronic structures, total and partial densities of states and local moments. 相似文献
2.
Gökhan Göko?lu 《Journal of Physics and Chemistry of Solids》2010,71(9):1388-1392
The lattice dynamics of large-gap semiconductor MgTe compound at various crystallographic phases; rocksalt (B1), zincblende (B3), NiAs (B81) and wurtzite (B4), has been investigated from first principles calculations based on density functional theory (DFT) within plane-wave pseudopotential method and generalized gradient approximation (GGA) of the exchange-correlation functional. The static equation of states of the compound has been studied with Vinet equation of states. The ground state of the compound is a fourfold coordinated wurtzite structure, which is consistent with experiments and recent theoretical calculations. Full phonon dispersion spectra of all related phases of the MgTe have been calculated using density functional perturbation theory within the linear-response approach. In view of the total energy calculations and the obtained vibrational spectra, it can be emphasized that the MgTe polymorphs with tetrahedral coordination (zincblende and wurtzite structures) are of covalent character rather than ionic. The large TO-LO splitting of phonon branches of rocksalt and NiAs phases reflect the high ionicity of these phases. 相似文献
3.
S. Nazir B. Amin A. Shaukat Y. Saeed 《Journal of Physics and Chemistry of Solids》2009,70(5):874-1965
First principles density functional calculations, using full potential linearized augmented plane wave (FP-LAPW) method, have been performed in order to investigate the structural, electronic and optical properties of CaxZn1−xO alloy in B1 (NaCl) phase. Dependence of structural parameters as well as the band gap values on the composition x have been analyzed in the range 0?x?1. Calculated electronic structure and the density of states of these alloys are discussed in terms of the contribution of Zn d, O p and Ca p and d states. Furthermore, optical properties such as complex dielectric constants ε(ω), refractive index including extinction coefficient k(ω), normal-incidence reflectivity R(ω), absorption coefficient α(ω) and optical conductivity σ(ω) are calculated and discussed in the incident photon energy range 0-45 eV. 相似文献
4.
R.D. Eithiraj 《Journal of Physics and Chemistry of Solids》2011,72(4):227-232
First-principles calculations were performed to investigate the stability, electronic structure and magnetism in Group IV elements-doped alkali-metal oxides (M2O) [M: Li, Na, K, Rb] in antifluorite structure using the linear muffin-tin orbital method in its tight-binding representation (TB-LMTO). The calculations reveal that non-magnetic dopants can induce stable half-metallic ferromagnetic ground state in I2-VI compounds. Total energy calculations show that the ferromagnetic state is energetically more stable than the non-magnetic state at equilibrium volume. Ground state properties such as equilibrium lattice constant and bulk modulus were calculated. The magnetic moment is found to be 2.00 μB per dopant atom. 相似文献
5.
A. Bansil M. Lindroos S. Sahrakorpi R.S. MarkiewiczG.D. Gu J. Avila L. Roca A. Tejeda M.C. Asensio 《Journal of Physics and Chemistry of Solids》2002,63(12):2175-2180
We discuss first-principles simulations of angle-resolved photoemission (ARPES) intensity in Bi2212 where the photoexcitation process is modeled realistically by taking into account the full crystal wavefunctions of the initial and final states in the presence of the surface. Some recent results aimed at understanding the effects of the energy and polarization dependencies of the ARPES matrix element are presented. The nature of the Fermi surface (FS) maps obtained via ARPES by holding the initial state energy fixed at the Fermi energy (EF) is clarified. The theoretically predicted FS map at 21 eV photon energy displays a remarkable level of agreement with the corresponding ARPES spectrum taken over a large area of the (kx,ky) plane. Our analysis shows how the ARPES matrix element can help disentangle closely spaced energy levels and FS sheets and highlight different aspects of the electronic spectrum in complex materials under various experimental conditions. 相似文献
6.
First principles study of the structural, electronic and magnetic properties of the (111), (110) and (001) surfaces of rocksalt sodium sulfide (rs-NaS) are reported. The results show that the bulk half-metallicity of this compound is well preserved on the surfaces considered here except for Na-terminated (111) surface. The spin-flip gap at the S-terminated (111), (001) and (110) surfaces are close to the bulk value. Using ab-initio atomistic thermodynamics, we calculate the surface energies as a function of chemical potential to find the most stable surface. We find that the Na-terminated (111) surface is the most stable one over the whole allowed range of chemical potential, while the surface energies of the (001) and (110) surfaces approach the most stable surface energy at the sulfur rich environment. We have also calculated the interlayer exchange interaction in bulk and Na-terminated (111) surface by classical Heisenberg model and we found that the surface effects do not change these kinds of interactions significantly. 相似文献
7.
The nanotube with open edges is an excellent candidate for designing efficient tip for atomistic scanning probes or field emission display (FED) devices. In the present work, we have studied the functionalization of an open-ended boron nitride nanotube (BNNT) with a series of transition metal rings and the effects on the properties of open-ended BNNT through density functional theory (DFT) calculations. The results show that the TM-BNNT complexes are energetically favorable. Moreover, it is found that the functionalization (a) significantly decreases the band gap of BNNT to different degrees, which might effectively modify the electronic properties of the open-ended BNNT; and (b) efficiently lowers the work function, which might improve the field emission properties. Our results might be helpful not only to design specific BNNT-based tips but also to further discuss the chemical vapor deposition (CVD) growth of BNNT on nanoparticles. 相似文献
8.
We present the results of our calculations on Boron antimony (BSb) compound in zinc-blende (ZB) and rock-salt (RS) structures by performing ab initio calculations within the local density approximation (LDA). Some basic physical properties, such as lattice constant, bulk modulus, cohesive energy, phase transition pressure, second-order elastic constants (Cij), phonon frequencies, and some band structural parameters are calculated and compared with those obtained with other recent theoretical works. In order to further understand the behaviour of BSb compound, we have also predicted, the pressure-dependent behaviours of the band gap, second-order elastic constants (Cij), Young's modulus, poison ratios (ν), Anizotropy factor (A), sound velocities, and Debye temperature for this hypothetical compound. 相似文献
9.
In this study, the electronic structure and magnetic properties of novel half-metallic Ti2FeSi full-Heusler compound with CuHg2Ti-type structure were examined by density functional theory (DFT) calculations. The electronic band structures and density of states of the Ti2FeSi compound show the spin-up electrons are metallic, but the spin-down bands are semiconductor with a gap of 0.45 eV, and the spin-flip gap is of 0.43 eV. Fe atom shows only a small magnetic moment and its magnetic moment is antiparallel to that of Ti atoms, which is indicative of ferrimagnetism in Ti2FeSi compound. The Ti2FeSi Heusler compound has a magnetic moment of 2 μB at the equilibrium lattice constant a=5.997 Å. 相似文献
10.
Zhi-hua Xiong 《Journal of Physics and Chemistry of Solids》2007,68(8):1500-1503
We perform first-principles spin polarized calculations of the electronic structure of Ti-doped in ZnO. Ferromagnetism in Ti-doped ZnO is identified, which is in agreement with recent experimental and calculated results. A net magnetic moment of 0.715μB is found per Ti. At a Ti concentration of 12.5%, total energy calculations show that the ferromagnetic state is 68 meV lower than the antiferromagnetic state. The electronic states near Fermi energy are dominated by strong hybridization between O 2p and Ti 3d, which is just the origin of impurity band in Ti-doped ZnO and also implies that the Ti-O bond is quite covalent instead of purely ionic. Since there is no magnetic element in this compound, Ti-doped ZnO appears to be an unambiguous dilute magnetic semiconductor. 相似文献
11.
12.
Chikashi Suzuki Tsuyoshi Nishi Masami Nakada Tomohito Tsuru Mitsuo Akabori Masaru Hirata Yoshiyuki Kaji 《Journal of Physics and Chemistry of Solids》2013
We investigated the electronic state of an (Am,U) mixed oxide with the fluorite structure using the all-electron full potential linear augmented plane wave method and compared it with those of Am2O3, AmO2, UO2, and La0.5U0.5O2. The valence of Am in the mixed oxide was close to that of Am2O3 and the valence of U in the mixed oxide was pentavalent. The electronic structure of AmO2 was different from that of Am2O3, particularly just above the Fermi level. In addition, the electronic states of Am and U in the mixed oxide were similar to those of trivalent Am and pentavalent U oxides. These electronic states reflected the high oxygen potential of AmO2 and the heightened oxygen potential resulting from the addition of Am to UO2 and also suggested the occurrence of charge transfer from Am to U in the solid solution process. 相似文献
13.
14.
Equilibrium geometries, relative stabilities, and magnetic properties of small AunMn (n=1-8) clusters have been investigated using density functional theory at the PW91P86 level. It is found that Mn atoms in the ground state AunMn isomers tend to occupy the most highly coordinated position and the lowest energy structure of AunMn clusters with even n is similar to that of pure Aun+1 clusters, except for n=2. The substitution of Au atom in Aun+1 cluster by a Mn atom improves the stability of the host clusters. Maximum peaks are observed for AunMn clusters at n=2, 4 on the size dependence of second-order energy differences and fragmentation energies, implying that the two clusters possess relatively higher stability. The HOMO-LUMO energy gaps of the ground state AunMn clusters show a pronounced odd-even oscillation with the number of Au atoms, and the energy gap of Au2Mn cluster is the biggest among all the clusters. The magnetism calculations indicate that the total magnetic moment of AunMn cluster, which has a very large magnetic moment in comparison to the pure Aun+1 cluster, is mainly localized on Mn atom. 相似文献
15.
Dmitrii V. Suetin 《Journal of Physics and Chemistry of Solids》2009,70(1):64-1920
First principles calculations have been performed with the purpose to understand the comparative peculiarities of the structural, electronic properties and stability for all phases formed in the tungsten-carbon system: hexagonal and cubic mono-carbides WC and four polymorphs (α, β, γ and ε) of semi-carbide W2C. All calculations were performed by means of the full-potential linearized augmented plane wave method (FLAPW). The generalized gradient approximation (GGA) in the Perdew-Burke-Ernzerhof (PBE) formalism was used for the exchange and correlation energy functional. The geometries of all WC and W2C phases were optimized and their structural parameters and theoretical density were established. Besides, we have evaluated the formation energies (Eform) of all the tungsten carbides. Based on our estimations we can arrange all investigated W-C phases depending on their stability in the following sequence: h-WC>ε-W2C>β-W2C>γ-W2C>α-W2C>c-WC. Here three carbides (h-WC, ε-W2C and β-W2C) are stable (Eform<0), γ-W2C belongs to metastable systems (Eform∼0), whereas α-W2C and c-WC appear to be unstable (Eform>0). Moreover, band structures, total and partial densities of states were obtained and analyzed systematically for all W-C phases in comparison with other available theoretical and experimental data. 相似文献
16.
Using the concept of self-entanglement, through which a pure state constructed in an augmented Hilbert space can describe a mixed state and through which the effects of physical decoherence can be mapped onto systems separated by an infinite distance, with the role of environmental states assumed by system states in disjoint Hilbert spaces, we show that expectation values of Hamiltonians subscribing to decoherence and satisfying the condition of extensivity, defined in the text, obey the energy convexity relation. The analysis based on self-entanglement also leads to a surprising interpretation of the failure of the convexity relation for model Hamiltonians such as the Hubbard model: The failure is due to the existence of self-entangled states with lower energies than the ground state so that in such models decoherence, i.e., disentangling from the self-entangled states, would cost energy and disallow the observation of the state through measurement. The Hubbard model is discussed extensively in an appendix where we also discuss and resolve some of the counterarguments to the convexity relation that have been advanced in the literature. 相似文献
17.
Jagrati Sahariya H.S. Mund B.L. Ahuja 《Journal of Physics and Chemistry of Solids》2011,72(12):1515-1518
We present Compton profiles of the GdAl2 compound and its constituents using a 20Ci 137Cs Compton spectrometer. The experimental Compton data have been analysed using theoretical data obtained from the spin polarised relativistic Korringa–Kohn–Rostoker (SPR-KKR) method and also the charge transfer on the formation of the compound. Both the experimental and the SPR-KKR theoretical Compton data support a charge transfer from Al→Gd in GdAl2, which is in accordance with the conclusions drawn from the partial, total and integrated density of states of GdAl2 and its constituents. 相似文献
18.
I.R. Shein 《Journal of Physics and Chemistry of Solids》2006,67(7):1436-1439
The electronic, magnetic properties and lattice relaxations of oxygen-deficient cubic strontium ferrite, SrFeO2.875, in ferromagnetic configuration are studied by means of the density functional theory using LCAO basis (SIESTA code) calculations. It is shown that Fe and Sr atoms are displaced from oxygen vacancies while oxygen anions are attracted to the vacancies. The DOS distributions, magnetic moments and atomic effective charges are analyzed in comparison with vacancy free SrFeO3; these parameters are found to change weakly with appearance of oxygen vacancies, in contrast to conventional ionic picture. Some strengthening of Fe-O covalent bonds in the vicinity of the oxygen vacancy is found. The formation energy of oxygen vacancies and divacancies are evaluated. 相似文献
19.
Yuanfeng Ye Hongmei Liu Jianwei Zhao 《Journal of Physics and Chemistry of Solids》2008,69(11):2615-2621
Theoretical investigation on a series of oligothienoacenes has been carried out at the B3LYP/6-31G* level by considering the influence of the external electric field. With the electric field increasing, the carbon-carbon single bonds become shorter and the carbon-carbon double bonds become longer, resulting in a better conjugation. Due to the different electron density, the charge mobility of the sulfur is more obvious than that of the carbon. The highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap decreases with the EF intensity increasing. The applied EF also changes the spatial distribution of the molecular orbits: LUMO and several higher orbitals shift to the high potential side, whereas HOMO and several lower ones shift to the low potential side. All these features behave more pronounced with increasing conjugated chain length. 相似文献
20.
For the solid-state density functional program Elk a module was developed that enables to interface the crystal orbitals data into the DGrid package. Within DGrid the real-space electronic properties, like the electron density and its gradient or Laplacian, kinetic energy density, electron localizability indicator, etc., are computed. The properties can be searched for critical points as well as for the interconnection lines between them. Additionally, the basins can be evaluated and the property integrals can be calculated. The results of topological analysis for fcc Al, MgB2, CaTiO3, and urea molecular crystal are discussed and compared with the experimental data. The role of certain computation parameters of (L)APW method is also analyzed. 相似文献