首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
基于光导微探针的近场/远场可扫描太赫兹光谱技术   总被引:2,自引:0,他引:2       下载免费PDF全文
太赫兹技术已经成为涉及公共安全、军事国防和国民经济等国家核心利益的前沿研究领域.以往太赫兹测量技术中通常以远场测量为主,如常用的太赫兹时域光谱仪.近年来太赫兹近场技术得到了迅猛的发展,特别是基于光导天线的探针技术的发展,为可扫描的太赫兹近场测量提供了可能.本文详细报道了我们近期在可扫描太赫兹近场光谱仪研究中的进展.采用光纤耦合的光导微探针实现了方便灵活的太赫兹近场/远场三维扫描,并同时获得振幅和相位信息.该系统将有可能广泛应用于人工微结构、石墨烯、表面等离子激元、波导传输、近场成像、生物样品检测、芯片检测等研究领域.  相似文献   

2.
焦重庆  牛帅 《物理学报》2013,62(11):114102-114102
基于扩展的等效电路方法, 建立了电偶极子和磁偶极子天线近场照射下开孔矩形腔体电磁屏蔽效能计算的近似解析模型, 计算分析了场源–腔体距离对电场和磁场屏蔽效能的影响规律. 结果表明在近场区, 屏蔽效能随场源–腔体距离的减小而明显减小, 近场屏蔽效能小于远场屏蔽效能. 基于Bethe小孔耦合理论, 得出了描述近场和远场屏蔽效能关系的解析公式, 并用该公式检验了等效电路方法计算结果的可信性. 关键词: 电磁屏蔽 矩形腔体 近场 Bethe 理论  相似文献   

3.
The apertureless scanning near-field microscope (ASNOM) mapping of surface phonon polariton (SPP) waves being excited at the surface of the SiC polar crystal at a frequency corresponding to the lattice resonance was investigated. The wave with well-defined direction and source position, as well as a well-known propagation law, was used to calibrate the signal of an ASNOM. An experimental proof is presented showing that the signal collected by the ASNOM in such a case is proportional (as a complex number) to the local field amplitude above the surface, regardless of the tip response model. It is shown that the expression describing an ASNOM response, which is, in general case, rather complicated nonlinear function of a surface/tip dielectric constants, wavelength, tip vibration amplitude, tip shape etc., can be dramatically simplified in the case of the SPP waves mapping in a mid-IR range, due to a lucky combination of the tip and surface parameters for the case being considered. A tip vibration amplitude is much less than a running SPP wave field decay height in a normal direction. At the same time, the tip amplitude is larger than a characteristic distance at which a tip–surface electromagnetic near-field interaction plays a significant role.  相似文献   

4.
Numerical simulations have been carried out in the framework of waveguide theory to model collection mode scanning near-field optical microscopy (SNOM). The theoretical model includes the optical fiber end and describes the metal coated aperture on the probe tip. The developed formalism goes beyond the existing Bethe-Bouwkamp theories for electromagnetic transmission of subwavelength apertures. The finite coating and optical fiber end are now taken into account. The new features enable us to simulate the near-field probes that are widely used in the collection mode SNOM. The emphases of the numerical analyses have been mainly on the resolution mechanism of the microscopy. Influence on the resolution from important parameters of the probe tips, such as the size of the apertures and the probe-sample distance, is extensively studied. The resolution dependence has been analyzed in the light of the near-field coupling efficiency of the probe tip. An optimum tip size has been found which is balanced between the significant signal transmission and the resolution of the device.  相似文献   

5.
A model of double-heterostructure lasers is developed which gives the far-field pattern of the laser in terms of such waveguide parameters as the active region width and the dielectric constants of the layers forming the waveguide. For symmetrical waveguides an explicit expression is given. Experimental results are presented which show a close agreement between the theory and the measured far-field patterns. By adding an extra passive layer to the conventional double heterostructure laser a structure is produced in which the measured half-power width of the far-field distribution is reduced from 55° to 32°. It is shown in this case that the model is useful for estimating the near-field pattern from the measured far-field pattern and hence determining the unknown waveguide parameters.  相似文献   

6.
A refined discussion of the near-field scattering of spherical nanoparticles and the electromagnetic fields close to the particle surface is given. New results for the dependence on the distance from the surface and the angular distribution of the scattered light in the near-field are given. It will be shown that the radial component of the electric field leads to striking differences in the phase functions in the near-field and the far-field. Exemplary computations are presented for Ag and Au particles with different size. In a second part the discussion is extended to assemblies of spherical Ag and Au nanoparticles. It will be shown that large near-fields at wavelengths commonly used in SERS experiments are obtained for aggregates. In the near-field scattering intensity “hot spots” mark regions between particles in the aggregate where the near-field is particularly high. Received: 4 May 2001 / Revised version: 20 July 2001 / Published online: 19 September 2001  相似文献   

7.
We use the tapping illumination and synchronous detection in a scanning near-field optical microscopy to obtain a near-field optical signal that is separated from the far-field signal. The illumination light was irradiated from the bent fiber tip vibrating normal to the sample surface. The transmitted light synchronized with the tapping vibration was observed. The obtained image of an organic film shows that this technique is effective for the weak contrast samples.This paper was originally presented at the 5th International Conference on NEAR FIELD OPTICS and RELATED TECHNOLOGIES (NFO-5), which was held on December 6–10, 1998 at Coganoi Bay Hotel, Shirahama, Japan, in cooperation with the Japan Society of Applied Physics and Mombusho Grant-in Aid for Scientific Research on Priority Areas “Near-field Nano-optics” Project, sponsored by Japan Society for the Promotion of Science.  相似文献   

8.
The convolution between spatial modes of two different parts of an optical system can convert evanescent waves into propagating waves. This principle is applied to different optical systems for analyzing various effects in transmission enhancements experiments. We discuss here the differences between the present principle which is related to broadening of resonances and the near-field optical microscopy based on a tunneling effect by a tip detector. The present analysis is applied in particular to two systems: a) transmission enhancement in one slit by coupling the transmitted radiation with transversal Fabry–Pérot electromagnetic (EM) modes, and b) transmission enhancement by coupling between a metallic film with arrays of holes and surface plasmons (SP). The present approach gives more information on transmission enhancement phenomena than that obtained by conventional treatments and can also solve certain disagreements between different theories. The differences between the present process of converting evanescent waves into propagating waves, and that related to the new development of getting a super-resolution by an hyperlens are discussed. PACS 41.20.Jb; 73.20.Mf; 42.79.Dj  相似文献   

9.
The excitation conditions of surface electromagnetic waves in one-dimensional photonic crystals (Bragg reflectors) are studied. Surface electromagnetic waves are visualized by the far-field optical microscopy of the surface of the photonic crystal. The enhancement of the Goos-Hänchen effect by surface electromagnetic waves excited in one-dimensional photonic crystals has been experimentally observed. The Goos-Hänchen shift reaches 30λ for a wavelength of λ = 532 nm.  相似文献   

10.
The research on the setup and application of scanning near-field optical microscopy (SNOM) performed in our laboratory is reviewed in this report. We have constructed a versatile low temperature scanning near-field optical microscope with the capability of near-field imaging and spectroscopy, operating at liquid nitrogen temperature. A special designed coaxial double lens was used to introduce the illumination beam through a 200μm fiber; the detected optical signal was transmitted via a fiber tip to an avalanche photon detector. The performance test shows the stability of the new design. The shear force image and optical image of a standard sample are shown. A system of SNOM working at room temperature and atmosphere was used to characterize semiconductors and bio-molecular samples. It revealed the unique features of semiconductor microdisks in the near-field that is significantly different from that of far-field. The effects of different geographic microstructures on the near-field light distribution of InGaP, GaN, and InGaN multi-quantum-well microdisk were observed.  相似文献   

11.
Kolkıran A  Agarwal GS 《Optics letters》2012,37(12):2313-2315
We analyze the far-field resolution of apertures that are illuminated by a point dipole located at subwavelength distances. It is well known that radiation emitted by a localized source can be considered a combination of traveling and evanescent waves, when represented by the angular spectrum method. The evanescent wave part of the source can be converted to propagating waves by diffraction at the aperture; thereby it contributes to the far-field detection. Therefore one can expect an increase in the resolution of objects. We present explicit calculations showing that the resolution at the far zone is improved by decreasing the source-aperture distance. We also utilize the resolution enhancement by the near field of a dipole to resolve two closely located apertures. The results show that without the near field (evanescent field) the apertures are not resolved, whereas with the near field of the dipole the far zone intensity distribution shows improved resolution. This method eliminates the requirements of near-field techniques such as controlling and scanning closely located tip detectors.  相似文献   

12.
The validity of the concept of laser-driven vacuum acceleration has been questioned, based on an extrapolation of the well-known Lawson-Woodward theorem, which stipulates that plane electromagnetic waves cannot accelerate charged particles in vacuum. To formally demonstrate that electrons can indeed be accelerated in vacuum by focusing or diffracting electromagnetic waves, the interaction between a point charge and coherent dipole radiation is studied in detail. The corresponding four-potential exactly satisfies both Maxwell's equations and the Lorentz gauge condition everywhere, and is analytically tractable. It is found that in the far-field region, where the field distribution closely approximates that of a plane wave, we recover the Lawson-Woodward result, while net acceleration is obtained in the near-field region. The scaling of the energy gain with wave-front curvature and wave amplitude is studied systematically.  相似文献   

13.
In this paper, a near-field tomographic solution is introduced to solve the imaging problem of fluid objects assumed to be weakly heterogeneous (Born approximation) and excited by spherical waves. The solution to the forward problem is based on the Huygens-Fresnel principle which describes the scattered field as the result of the interference scheme of all the secondary spherical waves. From the derivation of the scattered field, a new Fourier transform that has been called the elliptical Fourier transform is defined: It differs from the standard Fourier transform in that instead of a plane wave decomposition, a harmonic ellipsoidal wave decomposition is obtained. Based on this spectral analysis, a near-field Radon transform is designed that complements the "far-field tools" published in diffraction tomography literature. Then, assuming that the measuring distance is greater than one wavelength, the feasibility of reconstructing either the impedance or the velocity maps of an acoustical (perfect fluid) model is demonstrated. Numerical simulations were performed which confirmed the validity of the theory presented here; a theory which has many potential applications in future wave theory research.  相似文献   

14.
The objective of this paper is to discuss the role of fluctuational electrodynamics in the context of a generalized radiative heat transfer problem. Near-field effects, including the interference phenomenon and radiation tunneling, are important for applications to nanostructures. The classical theory of radiative transfer cannot be readily applied as the feature size approaches the dominant wavelength of radiative emission. At all length scales, however, propagation of radiative energy is properly represented by the electromagnetic wave approach, which requires the solution of the Maxwell equations. Fluctuational electrodynamics provides a model for thermal emission when solving a near-field radiation heat transfer problem, and the fluctuation-dissipation theorem provides the bridge between the strength of the fluctuations of the charges inside a body and its local temperature. This paper provides a complete and systematic derivation of the near-field radiative heat flux starting from the Maxwell equations. An illustrative example of near-field versus far-field radiation heat transfer is presented, and the length scale for transition from near- to far-field regime is discussed; the results show that this length scale can be as large as three times than predicted from Wien's law.  相似文献   

15.
龚志双  王秉中  王任 《物理学报》2018,67(8):84101-084101
为快速求解亚波长间距分布的理想导体球阵列近区的时间反演电磁场,提出一种基于等效偶极子模型的解析分析方法.首先,通过分析球面波照射理想导体小球的散射场解析解发现,散射场可以近似等效为电磁偶极子辐射场的叠加.等效偶极子的强度与初始激励源的幅度成正比关系.通过建立不同小球等效偶极子矢量间的耦合方程组可以直接求解得到相应矢量的大小.然后,结合时间反演腔理论得到相应的时间反演并矢格林函数,继而得到小球阵列近区的时间反演场分布.最后,通过与数值仿真软件的计算结果进行对比,验证了方法的正确性及高效性.研究表明,时间反演技术结合近场亚波长间距小散射体加载能够实现超分辨率的场聚焦.  相似文献   

16.
Numerical simulation of photon scanning tunneling microscopy is presented to study the near-field distribution in the vicinity a dielectric surface with one-dimensional sub-wavelength structures. Multiple scattering between the probe tip and the sample has been taken into account implicitly by matching electromagnetic boundary conditions at interfaces. The near-field intensity in transmission mode through two ridges on surface has been modeled in order to analyze the resolution of the system. The effects on the signal by the sample-tip coupling, the polarization of the incident light, and the angle of incidence are investigated. We find that the capability to recognize the feature will be improved when the tip–object interaction is strong.  相似文献   

17.
Scattering-type scanning near-field optical microscopy (s-SNOM) has been playing more and more important roles in investigating electromagnetic properties of various materials and structures on the nanoscale. In this technique, a sharp tip is employed as the near-field antenna to measure the sample's properties with a high spatial resolution. As the scattered near-field signal from the tip is extremely weak and contaminated by strong background noise, the effective detection, and subsequent extraction of the near-field information from the detected signals is the key issue for s-SNOM. In this review, we give a systematic explanation of the underlying mechanisms of s-SNOM, and summarize and interpret major signal detection techniques involved, including experimental setups, theories for signal analysis and processing, and exposition of advantages and disadvantages of such techniques. By this, we hope to provide a practical guide and a go-to source of detailed information for those interested in and/or working on s-SNOM.  相似文献   

18.
近场扫描光学显微术中, 近场距离的检测和控制是需要解决的核心技术之一. 本文研究了基于DDS驱动的压电传感器, 在一个压电陶瓷片上, 电极被分成相同的两部分, 分别用于振动驱动和振幅检测. 近场扫描的光纤探针固定于此压电陶瓷片上. 振动驱动信号采用DDS, 在样品的远场时, 可以通过频率扫描得到误差在0.006 Hz以内的压电陶瓷片谐振频率驱动信号, 而当光纤探针处于样品的近场距离之内时, 压电陶瓷片的谐振频率偏离驱动信号频率, 振幅明显减小, 从而检测出近场距离. 高精度振动驱动源DDS和高灵敏度压电传感器的采用提高了检测灵敏度和工作稳定性.  相似文献   

19.
A theory of an apertureless scanning near-field optical microscope is developed that takes into account the quadrupole moment of the probe in forming the near field and the scattered wave in the far-field zone. It is shown that the quadrupole moment can lead to a change in the conditions for the resonant coupling of the probe tip with the sample surface, as well as to the appearance of additional resonances in the frequency dependence of the response of a near-field microscope. The theory developed is found to be in good agreement with known experimental data in the region of resonant tip—sample coupling.  相似文献   

20.
We present an overview of recent progress in "plasmonics". We focus our study on the observation and excitation of surface plasmon polaritons (SPPs) with optical near-field microscopy. We discuss in particular recent applications of photon scanning tunnelling microscope (PSTM) for imaging of SPP propagating in metal and dielectric wave guides. We show how near-field scanning optical microscopy (NSOM) can be used to optically and actively address remote nano objects such as quantum dots. Additionally we compare results obtained with near-field microcopy to those obtained with other optical far-field methods of analysis such as leakage radiation microscopy (LRM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号