首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly oriented (100) thin films of LaVO3 and La1−xSrxVO3 have been fabricated by pulsed laser deposition in a reducing atmosphere. The films show a transition from insulating to metallic behaviour in the composition region of x, 0.175<x<0.200. In the single crystals of the antiferromagnetic insulating phase, a first-order structural phase transition is observed few degrees below the magnetic transition, which manifests itself as a kink in the temperature dependence of resistivity. In the highly oriented thin films of LaVO3 and La1−xSrxVO3 fabricated on lattice matched substrates in this study, the structural phase transformation in the insulating phase has been suppressed. The electrical conduction is found to take place via hopping through localized states at low temperatures. The metallic compositions show a non-linear (T1.5) behaviour in the temperature dependence of resistivity. V (2p) core level spectra of these films show a gradual change in the relative intensities of V3+ and V4+ ions as the value of x increases.  相似文献   

2.
The effect of doping spinel LiMn2O4 with chromium and magnesium has been studied using the first-principles spin density functional theory (DFT) within generalized gradient approximation (GGA ) and GGA+U. We find that GGA and GGA+U give different ground states for pristine LiMn2O4 and same ground state for doped systems. For LiMn2O4, the body-centered tetragonal phase was found to be the ground-state structure using GGA and face-centered orthorhombic using GGA+U, while for LiM0.5Mn1.5O4 (MCr or Mg) it was base-centered monoclinic and for LiMMnO4 (MCr or Mg) it was body-centered orthorhombic in both GGA and GGA+U. We find that GGA predicts the pristine LiMn2O4 to be metallic while GGA+U predicts it to be insulating, which is in accordance with the experimental observations. For doped spinels, GGA predicts the ground state to be half metallic while GGA+U predicts it to be insulating or metallic depending on the doping concentration. GGA+U predicts insulator-metal-insulator transition as a function of doping in case of Cr and in case of Mg the ground state is found to go from insulating to a half metallic state as a function of doping. Analysis of the charge density and the density of states (DOS) suggest a charge transfer from the dopants to the neighboring oxygen atoms and manganese atoms. We have calculated the Jahn-Teller active mode displacement Q3 for doped compounds using GGA and GGA+U. The bond lengths calculated from GGA+U are found to be in better agreement with experimental bond lengths. Based on the bond lengths of metal and oxygen, we have also estimated the average oxidation states of the dopants.  相似文献   

3.
The electrical conductivity of V3O5 single crystals has been investigated over a wide temperature range, including the region of existence of the metallic phase and the region of the transition from the metallic phase to the insulating phase. It has been shown that the low electrical conductivity of metallic V3O5 is caused, on the one hand, by a lower concentration of electrons and, on the other hand, by a strong electronelectron correlation whose role with decreasing temperature increases as the phase transition temperature is approached. The temperature dependence of the electrical conductivity of the insulating phase of V3O5 has been explained in the framework of the theory of hopping conduction, which takes into account the effect of thermal vibrations of atoms on the resonance integral.  相似文献   

4.
The electrical conductivity of V1 – xNbxO2 single crystals have been investigated over a wide temperature range covering regions of the existence of the metallic and insulating phases. It has been shown that, with an increase in the niobium concentration, the electrical conductivity of the metallic phase becomes below the Mott limit for the minimum metallic conductivity. Immediately after the metal–insulator transition, the electrical conductivity is determined by a large amount of free electrons that gradually localized with a decrease in the temperature. The temperature dependence of the electrical conductivity in the insulating phase of V1 – xNbxO2 has been explained in the framework of the hopping conductivity model that takes into account the effect of thermal vibrations of atoms on the resonance integral.  相似文献   

5.
The hexagonal and cubic phases of Ga1−xCuxV4S8 are obtained by different methods of preparation. The reaction of elements above 900 °C gives hexagonal phases for large range of x=0.02-0.5. These are metallic and show enhanced paramagnetism. The reduction of oxides by H2S at a lower temperature of 700 °C gives non-stoichiomertic compositions of cubic-V4 cluster compound GaV4S8. The solubility of Cu-atoms in cubic phase is less than 10% and above x=0.2 the samples contain a mixture of phases, CuxVS2, GaxVS2 and CuGaS2. The cubic phases are insulating and show Mott's Variable Range Hopping conduction. The non-stoichiomerty and the Cu-substitution reduce the resistivity and thermopower. For x=0.15 and 0.20, the additional peaks are observed in X-ray patterns. These compositions showed a sharp metal to insulator transition on cooling below 180 K. The transitional behaviour is very similar to that previously reported intercalated VS2 compound AlxVS2. The transport and magnetic properties of these phases are discussed in terms of the clustering interactions among V-atoms and the localisation of carriers on the metallic clusters frequently found in V-chalcogenides.  相似文献   

6.
Antiferromagnetic phase transition in two vanadium garnets AgCa2Co2V3O12 and AgCa2Ni2V3O12 has been found and investigated extensively. The heat capacity exhibits sharp peak due to the antiferromagnetic order with the Néel temperature TN=6.39 K for AgCa2Co2V3O12 and 7.21 K for AgCa2Ni2V3O12, respectively. The magnetic susceptibilities exhibit broad maximum, and these TN correspond to the inflection points of the magnetic susceptibility χ a little lower than T(χmax). The magnetic entropy changes from zero to 20 K per mol Co2+ and Ni2+ ions are 5.31 J K−1 mol-Co2+-ion−1 and 6.85 J K−1 mol-Ni2+-ion−1, indicating S=1/2 for Co2+ ion and S=1 for Ni2+ ion. The magnetic susceptibility of AgCa2Ni2V3O12 shows the Curie-Weiss behavior between 20 and 350 K with the effective magnetic moment μeff=3.23 μB Ni2+-ion−1 and the Weiss constant θ=−16.4 K (antiferromagnetic sign). Nevertheless, the simple Curie-Weiss law cannot be applicable for AgCa2Co2V3O12. The complex temperature dependence of magnetic susceptibility has been interpreted within the framework of Tanabe-Sugano energy diagram, which is analyzed on the basis of crystalline electric field. The ground state is the spin doublet state 2E(t26e) and the first excited state is spin quartet state 4T1(t25e2) which locates extremely close to the ground state. The low spin state S=1/2 for Co2+ ion is verified experimentally at least below 20 K which is in agreement with the result of the heat capacity.  相似文献   

7.
We have studied the electronic and magnetic properties of TbFexMn2−xO5 (x=0, 0.125, 0.25) samples using first-principles density functional theory within the generalized gradient approximation (GGA) schemes. The crystal structure of TbMn2O5 is orthorhombic containing Mn4+O6 octahedra and Mn3+O5 pyramids. The structure changes to monoclinic symmetry for the Fe-doping at the Mn sites. Our spin-polarized calculations give an insulating ground state for TbMn2O5 and a metallic ground state for Fe-doped TbMn2O5. Based on the magnetic properties calculations, it is found that the magnetic moment enhances with increase in the Fe-content in TbMn2O5. Most interestingly, the enhanced magnetic moment is due to a substantial reduction of the magnetic moments at the Fe sites.  相似文献   

8.
Dielectric properties, viz. dielectric constant ε′, loss tan δ and a.c conductivity σac (over a wide range of frequency and temperature) and dielectric breakdown strength of PbO-Sb2O3-As2O3 glasses doped with V2O5 (ranging from 0 to 0.5 mol%) are studied. Analysis of these results, based on optical absorption and ESR spectra, indicates that the insulating strength of the glasses is comparatively high when the concentration of V2O5 is about 0.3 mol% in the glass matrix.  相似文献   

9.
The metal insulator transition (MIT) characteristics of macro-size single-domain VO2 crystal were investigated. At the MIT, the VO2 crystal exhibited a rectangular shape hysteresis curve, a large change in resistance between the insulating and the metallic phases, in the order of ~105, and a small transition width (i.e. temperature difference before and after MIT) as small as 10?3°C. These MIT characteristics of the VO2 crystals are discussed in terms of phase boundary motion and the possibility of controlling the speed of the phase boundary, with change in size of crystal, is suggested.  相似文献   

10.
The metal-to-insulator transition (MIT) in V2O3 has been studied by thermoreflectance spectroscopy. The behaviour of the plasmon resonance as a function of crystal temperature has been measured. This experimental method is a sensitive probe of the effects of electron-electron correlation and/or of the band gap opening at the MIT phase transitions. A blue shift of the plasmon energy in cooling the sample throught the phase transition temperature has been found. This behaviour, with a shift in the opposite direction of that found in VO2, provides a direct experimental evidence that the electron-electron interaction plays a minor role in driving the V2O3 phase transition.  相似文献   

11.
Phase pure perovskite (1−xy)Pb(Ni1/3Nb2/3)O3-xPb(Zn1/3Nb2/3)O3-yPbTiO3 (PNN-PZN-PT) ferroelectric ceramics were prepared by conventional solid-state reaction method via a B-site oxide mixing route. The PNN-PZN-PT ceramics sintered at the optimized condition of 1185 °C for 2 h exhibit high relative density and rather homogenous microstructure. With the increase of PbTiO3 (PT) content, crystal structure and electrical properties of the synthesized PNN-PZN-PT ceramics exhibit successive phase transformation. A morphotropic phase boundary (MPB) is supposed to form in (0.9−x)PNN-0.1PZN-xPT at a region of x=32-36 mol% confirmed by X-ray diffraction (XRD) measurement and dielectric measurement. The MPB composition can be pictured as providing a “bridge” connecting rhombohedral ferroelectric (FE) phase and tetragonal one since crystal structure of the MPB composition is similar to both the rhombohedral and tetragonal lattices. Dielectric response of the sintered PNN-PZN-PT ceramics also exhibits successive phase-transition character. 0.64PNN-0.1PZN-0.26PT exhibits broad, diffused and frequency dependent dielectric peaks indicating a character of diffused FE-paraelectric (PE) phase transition of relaxor ferroelectrics and 0.40PNN-0.1PZN-0.50PT exhibits narrow, sharp and frequency independent dielectric peaks indicating a character of first-order FE-PE phase transition of normal ferroelectrics. The FE-PE phase transition of 0.56PNN-0.1PZN-0.34PT is nearly first-order with some diffused character, which also exhibits the largest value of piezoelectric constant d33 of 462pC/N.  相似文献   

12.
The effect of nonstoichiometry on the metal-insulator phase transition in V2O3 is studied. It is established that an increase in the vanadium deficiency in V2 ? yO3 brings about a shift in the phase transition temperature toward lower temperatures and an increase in the width of the temperature hysteresis loop of the electrical conductivity. As the vanadium deficiency increases to a level corresponding to the composition ~V1.974O3, the phase transition completely disappears and the sample remains metallic down to T = 1.6 K. The magnetoresistance is measured for samples of this composition in longitudinal and transverse magnetic fields at T = 4.2 K.  相似文献   

13.
Magnetic susceptibility (χ) and 51V NMR have been measured in (V1−xTix)2O3 near the phase boundary of the metal–insulator transition. It is established that the transition from antiferromagnetic insulating (AFI) to antiferromagnetic metallic phases near xc≈0.05 is not quantum critical, but is discontinuous with a jump of the transition temperature. In the AFI phase at 4.2 K, we observed the satellite in the zero-field 51V NMR spectrum around 181 MHz in addition to the ‘host’ resonance around 203 MHz. The satellite is also observable in the paramagnetic metallic phase of the x=0.055 sample. We associated the satellite with the V sites near Ti, which are in the V3+-like oxidation state, but has different temperature dependence of the NMR shift from that of the host V site. The host d-spin susceptibility for x=0.055 decreases below ∼60 K, but remains finite in the low-temperature limit.  相似文献   

14.
The crystal structure and electromagnetic properties as well as thermal stability of the A-site ordered PrBaMn2O6 manganites have been investigated. These samples have been prepared by using ‘two-steps’ synthesis mode. They have tetragonal structure with no tilt of MnO6 octahedra and show ferromagnetic metal to paramagnetic semiconductor transition. The most significant structural feature of the A-site ordered manganites is that the MnO2 sublattice is sandwiched by two types of rock-salt layers PrO and BaO. The different degree of Pr and Ba ions in the A-sublattice is revealed. The A-site ordered PrBaMn2O6 sample with maximum degree of the A-site order demonstrates ferromagnetic metallic to paramagnetic insulating transition with the Curie point ∼320 K. The A-site disordered Pr0.50Ba0.50MnO3 sample is ferromagnetic metal below TC≈140 K. The cation order in these compounds is stable in air up to 1300 °C. For the partly A-site ordered samples the magnetic and electronic phase separation is observed. The magnetotransport properties of the A-site ordered manganites treated under different conditions are discussed in terms of the superexchange interactions and A-site order degree.  相似文献   

15.
The initial slopes of the acoustic phonon dispersion curves in (V0.98Cr0.02)2O3 have been measured at room temperature in several of the high symmetry directions by inelastic neutron scattering. From these data several sound velocities and four independent elastic constants have been determined. Although the Cr doped specimen is in the insulating phase and pure V2O3 is metallic, these results are in good agreement with recent data (1) obtained by ultrasonic measurements on pure V2O3.  相似文献   

16.
Effects of epitaxial stress on the metal-insulator transition of V2O3 have been studied for in the form of epitaxial thin films grown on α-Al2O3 (0001) and LiTaO3 (0001) substrates. A metallic phase is stabilized down to 2 K in the V2O3 thin film on α-Al2O3 (0001), where the a-axis is compressed by 4% owing to large epitaxial stress. On the other hand, the transition temperature TMI is raised by 20 K from the value of 170 K in bulk samples in the film on LiTaO3 (0001), where the a-axis is expanded. These results suggest an intimate relationship between the a-axis length and TMI in V2O3. The conductivity of the metallic ultrathin films shows logarithmic temperature dependence below 20 K, probably due to the Anderson localization in two-dimensional systems.  相似文献   

17.
We examined the electrical and local structural properties of a VO2 film at different electric fields using electrical resistance and x-ray absorption fine structure (XAFS) measurements at the V K edge in the temperature range of 30–100 °C. The Tc value of the metal-to-insulator transition (MIT) during both heating and cooling decreases with electric field. When the electric field exceeds a certain value, the MIT becomes sharper due to Joule heating. The MIT, the structural phase transition (SPT), and the pre-edge peak transition of the VO2 do not congruently occur at a uniform temperature. A metallic VO2 is observed in only the rutile (or M2) symmetry. An electric field induces a substantial amount of conduction electrons in insulating VO2. Simultaneously measured resistance and XAFS reveal that Joule heating caused by an external electric field significantly affects the MIT and SPT of VO2.  相似文献   

18.
We have measured magnetization curves and powder neutron diffraction of double-layered Ruddlesden-Popper type ruthenate Sr3−xCaxRu2O7 (x=1.5, 2.0 and 3.0). The field dependence of the magnetization revealed that the transition field of metamagnetic transition along the b-axis shifted to lower fields and that the transition became broad with increasing Sr content. The slope of the magnetization curve also increased with increasing Sr content below the metamagnetic transition. These results indicate that an itinerant component is partly introduced by the Sr substitution. From the magnetic reflection, on cooling below TN, an additional reflection was observed at (0 0 1) for each x, and the amplitude increased with decreasing temperature. The observed diffraction patterns are very similar to those of Ca3Ru2O7. We conclude that the magnetic structure of the antiferromagnetic ordered phase is basically the same structure with that of Ca3Ru2O7.  相似文献   

19.
Mean-field equations describing the metal-insulator (MI) transition are formulated. They involve two coupled order parameters characterizing this transition: (i) a scalar order parameter describing the density change accompanying the transition from the insulating state to the metallic one and (ii) an order parameter (a two-component vector) describing the electron density in the metallic or semimetallic phase affected by the applied magnetic field. Two components of this vector correspond to different possible spin states of electrons in the applied magnetic field. The transition in the density of metallic and insulating phases being a first order phase transition is treated in terms of the Cahn-Hilliard-type gradient expansion. The transition in the electron density is a second order phase described by the Ginzburg-Landau-type functional. The coupling of these two parameters is described by the term linearly dependent on the electron density n in the metal with the proportionality factor being a function of the density of the metallic phase. The derived equations are solved in the case of the MI interface in the presence of both parallel and perpendicular uniform magnetic fields. The calculated surface tension Σmi between the metallic and insulating phases has a singular behavior. In the limit of zero electron density n ? 0, Σmin 3/2. Near the MI transition point T c(h) in the applied magnetic field, Σmi ~ [T - T c(h)]3/2. The singular behavior of the surface tension at the MI interface results in the clearly pronounced hysteresis accompanying the transition from the insulating to metallic state and vice versa.  相似文献   

20.
The pressure-induced phase transitions were studied in ZnTe by the thermoelectric power (S) technique. For the high-pressure trigonal phase P3121 cinnabar the large thermopower values S≈+400 correspond to semiconductor hole conductivity. During a transition into the orthorhombic structure Cmcm the value of S dropped by 40-50 times indicating metallic hole conductivity, like in the high pressure phases of other chalcogenides of II Group (HgSe, HgTe, CdTe) with Cmcm structure. In a transient region between the trigonal and orthorhombic phase (especially under decreasing pressure) a novel phase has been observed with a negative value of S. By analogy with other Zn and Cd chalcogenides whose NaCl phases have an electron type of conductivity the phase observed may have a NaCl structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号