首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This tutorial paper provides a general overview of the hierarchy of problems involving electromagnetic scattering by particles and clarifies the place of the radiative transfer theory and the theory of coherent backscattering in the context of classical electromagnetics. The self-consistent microphysical approach to radiative transfer is compared with the traditional phenomenological treatment.  相似文献   

2.
3.
We consider the effect of small scale random fluctuations of the constitutive coefficients on boundary measurements of solutions to radiative transfer equations. As the correlation length of the random oscillations tends to zero, the transport solution is well approximated by a deterministic, averaged, solution. In this paper, we analyze the random fluctuations to the averaged solution, which may be interpreted as a central limit correction to homogenization.With the inverse transport problem in mind, we characterize the random structure of the singular components of the transport measurement operator. In regimes of moderate scattering, such components provide stable reconstructions of the constitutive parameters in the transport equation. We show that the random fluctuations strongly depend on the decorrelation properties of the random medium.  相似文献   

4.
The problem of light scattering by a layer of densely packed discrete random medium is considered. The theory of light scattering by systems of nonspherical particles is applied to derive equations corresponding to incoherent (diffuse) and interference parts of radiation reflected from the medium. A solution of the system of linear equations describing light scattering by a system of particles is represented by iteration. It is shown that the symmetry properties of the T-matrices and of the translation coefficients for the vector Helmholtz harmonics lead to the reciprocity relation for an arbitrary iteration. This relation is applied to consider the backscattering enhancement phenomenon. Equations expressing the incoherent and interference parts of reflected light from statistically homogeneous and isotropic plane-parallel layer of medium are given. In the exact backscattering direction the relation between incoherent and interference parts is identical to that of sparse media.  相似文献   

5.
Current problems of the theory of multiple scattering of electromagnetic waves by discrete random media are reviewed, with an emphasis on densely packed media. All equations presented are based on the rigorous theory of electromagnetic scattering by an arbitrary system of non-spherical particles. The main relations are derived in the circular-polarization basis. By applying methods of statistical electromagnetics to a discrete random medium in the form of a plane-parallel layer, we transform these relations into equations describing the average (coherent) field and equations for the sums of ladder and cyclical diagrams in the framework of the quasi-crystalline approximation. The equation for the average field yields analytical expressions for the generalized Lorentz-Lorenz law and the generalized Ewald-Oseen extinction theorem, which are traditionally used for the calculation of the effective refractive index. By assuming that the particles are in the far-field zones of each other, we transform all equations asymptotically into the well-known equations for sparse media. Specifically, the equation for the sum of the ladder diagrams is reduced to the classical vector radiative transfer equation. We present a simple approximate solution of the equation describing the weak localization (WL) effect (i.e., the sum of cyclical diagrams) and validate it by using experimental and numerically exact theoretical data. Examples of the characteristics of WL as functions of the physical properties of a particulate medium are given. The applicability of the interference concept of WL to densely packed media is discussed using results of numerically exact computer solutions of the macroscopic Maxwell equations for large ensembles of spherical particles. These results show that theoretical predictions for spare media composed of non-absorbing or weakly absorbing particles are reasonably accurate if the particle packing density is less than ∼30%. However, a further increase of the packing density and/or absorption may cause optical effects not predicted by the low-density theory and caused by near-field effects. The origin of the near-filed effects is discussed in detail.  相似文献   

6.
We consider the problem of backscattering of light by a layer of discrete random medium illuminated by an obliquely incident plane electromagnetic wave. The multiply scattered reflected radiation is assumed to consist of incoherent and coherent parts, the coherent part being caused by the interference of multiply scattered waves. Formulas describing the characteristics of the reflected radiation are derived assuming that the scattering particles are spherical. The formula for the incoherent contribution reproduces the standard vector radiative transfer equation. The interference contribution is expressed in terms of a system of Fredholm integral equations with kernels containing Bessel functions. The special case of the backscattering direction is considered in detail. It is shown that the angular width of the backscattering interference peak depends on the polar angle of the incident wave and on the azimuth angle of the reflection direction.  相似文献   

7.
Direct computer simulations of electromagnetic scattering by discrete random media have become an active area of research. In this progress review, we summarize and analyze our main results obtained by means of numerically exact computer solutions of the macroscopic Maxwell equations. We consider finite scattering volumes with size parameters in the range [20] and [59], composed of varying numbers of randomly distributed particles with different refractive indices. The main objective of our analysis is to examine whether all backscattering effects predicted by the low-density theory of coherent backscattering (CB) also take place in the case of densely packed media. Based on our extensive numerical data we arrive at the following conclusions: (i) all backscattering effects predicted by the asymptotic theory of CB can also take place in the case of densely packed media; (ii) in the case of very large particle packing density, scattering characteristics of discrete random media can exhibit behavior not predicted by the low-density theories of CB and radiative transfer; (iii) increasing the absorptivity of the constituent particles can either enhance or suppress typical manifestations of CB depending on the particle packing density and the real part of the refractive index. Our numerical data strongly suggest that spectacular backscattering effects identified in laboratory experiments and observed for a class of high-albedo Solar System objects are caused by CB.  相似文献   

8.
Three-dimensional steady-state radiative integral transfer equations (RITEs) for a cubic absorbing and isotropically scattering homogeneous medium are solved using the method of “subtraction of singularity”. Surface integrals and volume integrals are carried out analytically to eliminate singularities, to assure highly accurate solutions, and to reduce the computational time. The resulting system of linear equations for the incident energy is solved iteratively. Six benchmark problems for cold participating media subjected to various combinations of externally uniform/non-uniform diffuse radiation loads are considered. The solutions for the incident energy and the net heat flux components are given in tabular form for scattering albedos of ω=0, 0.5 and 1.  相似文献   

9.
The Pomraning phase function can be used to perform approximate polarized Rayleigh transfer calculations with a scalar radiative transfer equation. The approximation is numerically tested for the albedo problem consisting of azimuthally independent radiation incident on a homogeneous semi-infinite atmosphere. The numerical tests were carried out with the same approach used by Viik (JQSRT 68 (2000) 319-326) to numerically test the approximate phase function for solving the Milne problem. Away from the surface the Pomraning phase function gives marginally better results for the diffuse radiation than the usual scalar Rayleigh phase function because it was derived from an asymptotic limit more appropriate for deeper locations in an atmosphere. For optical depths less than unity, though, the scalar Rayleigh approximation is better than the Pomraning approximation.  相似文献   

10.
Three-dimensional radiative transfer in an anisotropic scattering medium exposed to spatially varying, collimated radiation is studied. The generalized reflection function for a semi-infinite medium with a very general scattering phase function is the focus of this investigation. An integral transform is used to reduce the three-dimensional transport equation to a one-dimensional form, and a modified Ambarzumian's method is applied to formulate a nonlinear integral equation for the generalized reflection function. The integration is over both the polar and azimuthal angles; hence, the integral equation is said to be in the double-integral form. The double-integral, reflection function formulation can handle a variety of anisotropic phase functions and does not require an expansion of the phase function in a Legendre polynomial series. Complicated kernel transformations of previous single-integral studies are eliminated. Single and double scattering approximations are developed. Numerical results are presented for a Rayleigh phase function to illustrate the computational characteristics of the method and are compared to results obtained with the single-integral method. Agreement between the two approaches is excellent; however, as the transform variable increases beyond five the number of quadrature points required for the double-integral method to produce accurate solutions significantly increases. A new interpolation scheme produces accurate results when the transform variable is large.  相似文献   

11.
The focus of this study is the generalized reflection function of multidimensional radiative transfer. The physical situation considered is spatially varying, collimated radiation incident on the upper boundary of an isotropically scattering, semi-infinite medium. An integral transform is used to reduce the three-dimensional transport equation to a one-dimensional form, and a modified Ambarzumian's method is applied to formulate a nonlinear integral equation for the generalized reflection function. The resulting equation is said to be in double-integral form because the integration is over both angular variables. Computational issues associated with this generalized reflection function formulation are investigated. The source function and reflection function formulations are compared, and the relative merits of the two approaches are discussed.  相似文献   

12.
The problem of spatially varying, collimated radiation incident on an anisotropically scattering, plane-parallel medium is considered. A very general phase function is allowed. An integral transform is used to reduce the three-dimensional radiative transport equation to a one-dimensional form, and a modified Ambarzumian's method is applied to derive nonlinear integral and integro-differential equations for the generalized reflection and transmission functions. The integration is over the polar and azimuthal angles—this formulation is referred to as the double-integral formulation. The integral equations are used to illustrate symmetry relationships and to obtain single- and double-scattering approximations. The generalized reflection and transmission functions are important in the construction of the solutions to many multidimensional problems. Coupled integral equations for the interior and emergent intensities are developed and, for the case of two identical homogeneous layers, used to formulate a doubling procedure. Results for an isotropic and Rayleigh scattering medium are presented to illustrate the computational characteristics of the formulation.  相似文献   

13.
A procedure is tested with which to determine the single-scattering albedo from polarization measurements of the angle-dependent intensity at two locations within, or on the boundaries of, a homogeneous finite or infinite atmosphere that scatters radiation according to the Rayleigh law with true absorption.  相似文献   

14.
Measurements with directional radiometers and calculations based on the radiative transfer equation (RTE) have been at the very heart of weather and climate modeling and terrestrial remote sensing. The quantification of the energy budget of the Earth's climate system requires exquisite measurements and computations of the incoming and outgoing electromagnetic energy, while global characterization of climate system's components relies heavily on theoretical inversions of observational data obtained with various passive and active instruments. The same basic problems involving electromagnetic energy transport and its use for diagnostic and characterization purposes are encountered in numerous other areas of science, biomedicine, and engineering. Yet both the discipline of directional radiometry and the radiative transfer theory (RTT) have traditionally been based on phenomenological concepts many of which turn out to be profound misconceptions. Contrary to the widespread belief, a collimated radiometer does not, in general, measure the flow of electromagnetic energy along its optical axis, while the specific intensity does not quantify the amount of electromagnetic energy transported in a given direction.The recently developed microphysical approach to radiative transfer and directional radiometry is explicitly based on the Maxwell equations and clarifies the physical nature of measurements with collimated radiometers and the actual content of the RTE. It reveals that the specific intensity has no fundamental physical meaning besides being a mathematical solution of the RTE, while the RTE itself is nothing more than an intermediate auxiliary equation. Only under special circumstances detailed in this review can the solution of the RTE be used to compute the time-averaged local Poynting vector as well as be measured by a collimated radiometer. These firmly established facts make the combination of the RTE and a collimated radiometer useful in a well-defined range of applications. However, outside the domain of validity of the RTT the practical usefulness of measurements with collimated radiometers remains uncertain, while the theoretical modeling of these measurements and the solution of the energy-budget problem require a more sophisticated approach than solving the RTE.  相似文献   

15.
ARTS is a modular program that simulates atmospheric radiative transfer. The paper describes ARTS version 1.0, which is applicable in the absence of scattering. An overview over all major parts of the model is given: calculation of absorption coefficients, the radiative transfer itself, and the calculation of Jacobians. ARTS can be freely used under a GNU general public license.Unique features of the program are its scalability and modularity, the ability to work with different sources of spectroscopic parameters, the availability of several self-consistent water continuum and line absorption models, and the analytical calculation of Jacobians.  相似文献   

16.
In this paper, the control volume finite element method (CVFEM) is applied for the first time to solve nonaxisymmetric radiative transfer in inhomogeneous, emitting, absorbing and anisotropic scattering cylindrical media. Mathematical formulations as well as numerical implementation are given and the final discretized equations are based on similar meshes used for convective and conductive heat transfer in computational fluid dynamic analysis. In order to test the efficiency of the developed method, four nonaxisymmetric problems have been examined. Also, the grid dependence and the false scattering of the CVFEM are investigated and compared with the finite volume method and the discrete ordinates interpolation method.  相似文献   

17.
The ability of the finite volume method (FVM) and the discrete ordinates method (DOM) to model radiative heat transfer in acute forward anisotropic scattering media has been investigated. The test case involves a purely scattering medium in a cubic enclosure, irradiated by one boundary with diffuse emission. Four phase functions have been considered: three of the Henyey-Greenstein type with respective asymmetry factors of 0.2, 0.8 and 0.93, and a Mie phase function with a strong forward scattering peak (computed for a size parameter of 245 and corresponding to an asymmetry factor of 0.93). Results obtained with the FVM are in good agreement with Monte Carlo reference solutions, whatever the level of acute anisotropic scattering (for asymmetry factors up to 0.93). The DOM combined with the renormalization procedures of the phase function proposed by Kim and Lee (Effect of anisotropic scattering on radiative heat transfer in two-dimensional rectangular enclosures. Int J Heat Mass Transfer 1988;31:1711-21. [1]) and Wiscombe (On initialization error and flux conservation in the doubling method. JQSRT 1976;18:637-58. [2]) provides accurate results only for the smallest asymmetry factor. As the asymmetry factor increases, the renormalization procedures induce strong modifications in the values of the discretized phase function resulting in an underestimation of the effective attenuation by scattering. This error has been found to increase with optical thickness. In fact, when using the DOM, results would be more accurate combining this method with a Delta-Eddington approximation of the phase function, instead of using the actual phase function which is altered too much by renormalization.  相似文献   

18.
The spatial averaging theorem is applied to rigorously derive continuum-scale equations of radiative transfer in two-phase media consisting of arbitrary-type phases in the limit of geometrical optics. The derivations are based on the equations of radiative transfer and the corresponding boundary conditions applied at the discrete-scale to each phase, and on the discrete-scale radiative properties of each phase and the interface between the phases. The derivations confirm that radiative transfer in two-phase media consisting of arbitrary-type phases in the range of geometrical optics can be modeled by a set of two continuum-scale equations of radiative transfer describing the variation of the average intensities associated with each phase. Finally, a Monte Carlo based methodology for the determination of average radiative properties is discussed in the light of previous pertinent studies.  相似文献   

19.
The double interval spherical harmonic method introduced effectively by Wilson and Sen has already been used by Ghosh and Karanjai to solve the equation of radiative transfer in coherent isotropic scattering atmosphere, originally developed by Woolley and Stibbs. The same method has been successfully used in this paper to solve the equation of transfer for coherent anisotropic scattering.  相似文献   

20.
Although the note by Hapke and Nelson has virtually no relevance to our original publication, it contains a number of statements that are misleading and/or wrong. We, therefore, use this opportunity to dispel several profound misconceptions that continue to hinder the progress in remote sensing of planetary surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号