首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Aurivillius SrBi2(Nb0.5Ta0.5)2O9 (SBNT 50/50) ceramics were prepared using the conventional solid-state reaction method. Scanning electron microscopy was applied to investigate the grain structure. The XRD studies revealed an orthorhombic structure in the SBNT 50/50 with lattice parameters a=5.522 Å, b=5.511 Å and c=25.114 Å. The dielectric properties were determined by impedance spectroscopy measurements. A strong low frequency dielectric dispersion was found to exist in this material. Its occurrence was ascribed to the presence of ionized space charge carriers such as oxygen vacancies. The dielectric relaxation was defined on the basis of an equivalent circuit. The temperature dependence of various electrical properties was determined and discussed. The thermal activation energy for the grain electric conductivity was lower in the high temperature region (T>303.6 °C, Ea−ht=0.47 eV) and higher in the low temperature region (T<303.6 °C, Ea−lt=1.18 eV).  相似文献   

2.
The electronic structure and magnetic properties of the Ti2CoB Heusler compound with a high-ordered CuHg2Ti structure were investigated using the self-consistent full potential linearized augmented plane wave (FPLAPW) method within the density functional theory (DFT). Spin-polarized calculations show that the Ti2CoB compound is half-metallic ferromagnetic with a magnetic moment of 2 μB at the equilibrium lattice constant, a=5.74 Å. The Ti2CoB Heusler compound is ferromagnetic below the equilibrium lattice constant and ferrimagnetic above the equilibrium lattice constant. A large peak in majority-spin DOS and an energy gap in minority-spin DOS are observed at the Fermi level, yielding a spin polarization of 100%. A spin polarization higher than 90% is achieved for a wide range of lattice constants between 5.6 and 6.0 Å.  相似文献   

3.
We present the results of impedance spectroscopic study with its analytical interpretations in the framework of electric modulus formalism for Barium Nickel Tantalate Ba(Ni1/3Ta2/3)O3 (BNT), Calcium Nickel Tantalate Ca(Ni1/3Ta2/3)O3 (CNT) and Strontium Nickel Tantalate Sr(Ni1/3Ta2/3)O3 (SNT) synthesized by the solid-state reaction technique. The results of powder X-ray diffraction study reveal that BNT and SNT crystallize in cubic structure with lattice parameter a=4.07 Å and 3.98 Å respectively, whereas CNT crystallizes in monoclinic structure having lattice parameters, a=5.71 Å, b=13.45 Å and c=5.47 Å with β=118.3°. The logarithmic angular frequency dependence of the real part of complex dielectric permittivity and loss tangent as a function of temperature indicate significant dielectric relaxation in the samples, which have been explained by the Debye theory. The frequency dependence of the loss peak and the imaginary part of electrical modulus are found to obey the Arrhenius law. The relaxation mechanism of these samples is modeled by the Cole–Cole equation. This confirms that the polarization mechanism in BNT, CNT and SNT is due to the bulk effect arising in semiconductive grains. The scaling behavior of imaginary part of electric modulus M″ suggests that the relaxation describes the same mechanism at various temperatures but relaxation frequency is strongly temperature dependent. The normalized peak positions of tan δ/tan δm and M″/Mm versus log ω for BNT, CNT and SNT do not overlap completely and are very close to each other. These indicate the presence of both long-range and localized relaxation. Due to their high dielectric constant and low loss tangent, these materials may find several technological applications such as in capacitors, resonators, filters and integrated circuits.  相似文献   

4.
 The crystal structure of a layered ternary carbide, Ti3(Si0.43Ge0.57)C2, was studied with single-crystal X-ray diffraction. The compound has a hexagonal symmetry with space group P63/mmc and unit-cell parameters a=3.0823(1) Å, c=17.7702(6) Å, and V=146.21(1) Å3. The Si and Ge atoms in the structure occupy the same crystallographic site surrounded by six Ti atoms at an average distance of 2.7219 Å, and the C atoms are octahedrally coordinated by two types of symmetrically distinct Ti atoms, with an average C-Ti distance of 2.1429 Å. The atomic displacement parameters for C and Ti are relatively isotropic, whereas those for A (=0.43Si+0.57Ge) are appreciably anisotropic, with U11 (=U22) being about three times greater than U33. Compared to Ti3SiC2, the substitution of Ge for Si results in an increase in both A-Ti and C-Ti bond distances. An electron density analysis based on the refined structure shows that each A atom is bonded to 6Ti atoms as well as to its 6 nearest neighbor A site atoms, whether the site is occupied by Si or Ge, suggesting that these bond paths may be significantly involved with electron transport properties.  相似文献   

5.
Chromium(II) sulfide, Y2CrS4, prepared by a solid-state reaction of Y2S3 and CrS, showed an antiferromagnetic transition at 65 K. The neutron diffraction patterns at 10 and 90 K were both well refined with the space group Pca21. At 90 K, cell parameters were a=12.5518(13) Å, b=7.5245(8) Å, and c=12.4918(13) Å. At 10 K, magnetic peaks were observed, which could be indexed on the same unit cell. Magnetic moments of chromium ions were parallel to the b-axis and antiferromagnetically ordered in each set of the 4a sites.  相似文献   

6.
Thermally evaporated Bi2Te3 thin films were deposited on glass substrates. X-ray diffraction study confirmed that the growned films are polycrystalline in nature having hexagonal structure. The film exhibits preferential orientation along the [0 1 5] direction for the films of all thickness together with other abundant planes [0 1 1 1] and [1 1 0]. Various structural parameters such as lattice constants, crystallite size, strain, and dislocation density have been calculated and they are found to be thickness dependent. The lattice parameters are found to be a=4.38 Å and c=30.40 Å. The grain size of the films increases with thickness as the dislocation density and the microstrain decreases with thickness. The mean bond energy and the average coordination number of Bi2Te3 thin film are found to be 1.72 eV and 2.4, respectively.  相似文献   

7.
High-pressure phase transition of Ta2NiO6 with the trirutile-type structure was investigated from the viewpoint of crystal chemistry. A new quenchable high-pressure phase was found in the pressure range higher than 7 GPa and 900°C. The high-pressure phase has an orthorhombic cell (a=4.797(1) Å, b=5.153(2) Å and c=14.85(1) Å and space group; Abm2), and it is more dense by 9.6% than the trirutile-structured phase. Infrared spectra of the trirutile-type phase and the high-pressure phase show that Ni2+ ions in the high-pressure phase are still in octahedral sites. The crystal structure of the high-pressure phase is considered as a cation-ordering trifluorite-type structure, which can be stabilized by a crystal field effect of Ni2+ ions.  相似文献   

8.
The electronic structure and magnetic properties of the Heusler compound Co2ScP have been investigated by the generalized gradient approximation based on density functional theory. The results show that the ground state phase of the Co2ScP compound possesses AlCu2Mn-type crystal structure and exhibits half-metallic ferrimagnetism. The total spin moment is 2 μB at the equilibrium lattice constant a0=5.83 Å, which agrees with the Slater–Pauling rule. The spin-up electrons are metallic, but the spin-down bands are semiconductor with a gap of 0.55 eV, and the spin-flip gap is of 0.07 eV.  相似文献   

9.
The crystal structure evolution of the Sr2GdRuO6 complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K≤T≤1273 K. Powder X-ray diffraction measurements at room temperature and Rietveld analysis show that this compounds crystallizes in a monoclinic perovskite-type structure with P21/n (#14) space group and the 1:1 ordered arrangement of Ru5+ and Gd3+ cations over the six-coordinate M sites, with lattice parameters a=5.81032(8) Å, b=5.82341(4) Å, c=8.21939(7) Å, V=278.11(6) Å3 and angle β=90.311(2)o. The high-temperature analysis shows that this material suffers two-phase transitions. At 373 K it adopts a monoclinic perovskite structure with I2/m space group, and lattice parameters a=5.81383(2) Å, b=5.82526(4) Å, c=8.22486(1) Å, V=278.56(2) Å3 and angle β=90.28(2)o. Above of 773 K, it suffers a phase transition from monoclinic I2/m to tetragonal I4/m, with lattice parameters a=5.84779(1) Å, c=8.27261(1) Å, V=282.89(5) Å3 and angle β=90.02(9)o. The high-temperature phase transition from monoclinic I2/m to tetragonal I4/m is characterized by strongly anisotropic displacements of the anions.  相似文献   

10.
The chemical preparation, the calorimetric studies and the crystal structure are given for two new organic sulfates NH3(CH2)5NH3SO4 1.5H2O (DAP-S) and NH3(CH2)9NH3SO4·H2O (DAN-S). DAP-S is monoclinic P21/n with unit cell dimensions: a=11.9330(2) Å; b=10.9290(2) Å; c=17.5260(2) Å; β=101.873(1)°; V=2236.77(6) Å3; and Z=8. Its atomic arrangement is described as inorganic layers of units and water molecules separated by organic chains. DAN-S is monoclinic P21/c with unit cell parameters: a=5.768(2) Å; b=25.890(10) Å; c=11.177(5) Å; β=115.70(4)°; V=1504.0(11) Å3 and Z=4. Its structure exhibits infinite chains, parallel to the [100] direction where the organic cations are interconnected. In both structures a network of strong and weak hydrogen bonds connects the different components in the building of the crystal.  相似文献   

11.
Octacalcium phosphate (OCP) powder was produced by precipitating 250 mL Ca(CH3COO)2 0.04 M into 750 L of phosphate solution (5 mmol Na2HPO4 and 5 mmol NaH2PO4) at a constant temperature of 60 °C and pH 5, which resulted in a dry white powder. X-ray diffraction (XRD), transmission electron microscopy (TEM) analysis, and the electron diffraction pattern (SAED) all showed only OCP. Hydroxyapatite (HAP) was directly obtained through hydrolysis of the powder. The total transformation of OCP into HAP was registered over a period of 6 h. During the first 30 min of hydrolysis both phases coexisted. The two phases and the OCP-HAP interface were structurally analyzed through XRD and TEM. OCP parameters (calculated by the Rietveld method) are a=19.70, b=9.50, c=6.85 Å; α=90.03°, β=92.48°, γ=108.32° (triclinic P-1) with average crystal size of 13.5±0.2 nm, while HAP parameters were a=9.45, c=6.87 Å (hexagonal P63/m) with average crystal size of 16.9±0.2 nm.  相似文献   

12.
The crystalline structures of two modifications of a compound containing the oxadiazole ring, 2,5-di-(4-aminophenyl)-1,3,4-oxadiazole (DAPO) were determined. One of these modifications contains water molecules in the crystal structure, which is observed for the first time for an oxadiazole crystal. Both crystals show an orthorhombic structure. The water free modification, DAPO I, belongs to the space group Pbca (61) and has the lattice parameters: a=13.461(5), b=7.937(3) and c=22.816(8) Å (CCDC 246608). The water containing pseudo-polymorph, DAPO II, has the space group Cmcm (63) and the lattice parameters: a=16.330(5), b=12.307(2) and c=6.9978(14) Å (CCDC 246609). To gain information on the inter molecular interactions within the crystals, X-ray experiments under compression at ambient temperature and under heating at vacuum conditions were performed. Neither DAPO I nor DAPO II undergo phase transitions in the ressure range up to 5 GPa, as could be concluded from X-ray and Raman experiments. X-ray and calorimetric studies indicate that DAPO II dehydrates into DAPO I under increasing temperature. Structural considerations suggest a two-stage process. The compression behavior of both substances is well described by the Murnaghan equation of state (MEOS) and the values of the bulk modulus and its pressure derivative are determined for these crystals. Additionally, in the case of DAPO I, also the thermal expansion coefficient α0 was measured.  相似文献   

13.
We have used synchrotron X-ray diffraction to investigate the structural and chemical changes undergone by polycrystalline KH2PO4 (KDP) upon heating within the 30-250 °C temperature interval. Our data show evidence of a polymorphic transition at T∼190 °C from the room-temperature tetragonal KDP phase to a new intermediate-temperature monoclinic KDP modification (spacegroup P21/m and lattice parameters a=7.590, b=6.209, c=4.530 Å, and β=107.36°). The monoclinic RDP polymorph remains stable upon further heating to 235 °C, and is isomorphic to its RbH2PO4 and CsH2PO4 counterparts.  相似文献   

14.
The compound (Me4P)2ZnBr4, a member of the β-K2SO4 structure class, undergoes a phase transition at 84°C from the room temperature space group P121/c1 to the parent Pmcn structure. The room temperature structure corresponds to a ferrodistortive transition of B1g symmetry at the zone center. At room temperature, the compound has lattice constants a=9.501(1), b=16.055(2), c=13.127(2) Å and β=90.43(1)°. For the high temperature phase, the orthorhombic cell has dimensions a=9.466(2), b=16.351(3) and c=13.284(2) Å. The structures consist of two crystallographically independent Me4P+ cations and the ZnBr42− anions. In the room temperature phase, all three ionic species show substantial displacement from the mirror plane perpendicular to the a-axis that exists in the high temperature phase, as well as rotations out of that plane. The thermal parameters of the cations are indicative of substantial librational motion. Measurements of lattice parameters have been made at 2-5°C intervals over the temperature range 40-140°C. The changes in the lattice constants appear continuous at Tc (within experimental limits) indicating that the phase transition is likely second-order. The a lattice constant shows an anomalous shortening as Tc is approached. Thermal expansion coefficients are calculated from this data. An application of Landau theory is used to derive the temperature dependencies of spontaneous shear strain and corresponding elastic stiffness constants associated with the primary order parameter.  相似文献   

15.
The tight-binding linear muffin tin orbital (TB-LMTO) method within the local density approximation is used to calculate structural, electronic and magnetic properties of GdN under pressure. Both nonmagnetic (NM) and magnetic calculations are performed. The structural and magnetic stabilities are determined from the total energy calculations. The magnetic to ferromagnetic (FM) transition is not calculated. Magnetically, GdN is stable in the FM state, while its ambient structure is found to be stable in the NaCl-type (B1) structure. We predict NaCl-type to CsCl-type structure phase transition in GdN at a pressure of 30.4 GPa. In a complete spin of FM GdN the electronic band picture of one spin shows metallic, while the other spin shows its semiconducting behavior, resulting in half-metallic behavior at both ambient and high pressures. We have, therefore, calculated electronic band structures, equilibrium lattice constants, cohesive energies, bulk moduli and magnetic moments for GdN in the B1 and B2 phases. The magnetic moment, equilibrium lattice parameter and bulk modulus is calculated to be 6.99 μB, 4.935 Å and 192.13 GPa, respectively, which are in good agreement with the experimental results.  相似文献   

16.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

17.
Neutron powder diffraction studies showed that the ordered perovskites Ba2BiSbO6 (BBS) and BaSrBiSbO6 (BSBS) crystallize in a rhombohedral structure with the space group R3¯. The room-temperature lattice parameters are a=6.0351(2) Å; α=60.202(1)° and a=5.9809(2) Å; α=60.045(2)°, respectively. BBS exhibits a dielectric anomaly near room temperature which may be related to structural transition from the R3¯ to low-temperature monoclinic I2/m symmetry. BSBS shows a dielectric anomaly near 723 K which coincides with a phase transition from the rhombohedral to cubic (Fm3¯m) structure. In contrast to BBS, BSBS does not undergo structural transition below room temperature.  相似文献   

18.
First-principles calculation based on density-functional theory in the pseudo-potential approach have been performed for the total energy and crystal structure of BaTaO2N. The calculations indicate a random occupation of the anionic positions by O and N in a cubic structure, in agreement with neutron diffraction measurements and infrared spectra. The local symmetry in the crystal is broken, maintaining a space group Pm3?m, as used in structure refinement, which represents only the statistically averaged result. The calculations also indicate displacive disordering in the crystal. The average Ta-N distance is smaller (2.003 Å), while the average Ta-O distance becomes larger (2.089 Å). The local relaxation of the atoms has an influence on the electronic structure, especially on the energy gap. BaTaO2N is calculated to be a semiconductor with an energy gap of about 0.5 eV. The upper part of the valence band is dominated by N 2p states, while O 2p states are mainly in the lower part. The conduction band is dominated by Ta 5d states.  相似文献   

19.
A new molecular solid, [1-(4′-bromo-2′-fluorobenzyl)-4-dimetylaminopyridinium]-bis(maleonitriledithiolato)nickel(III), (BrFBzPyN(CH3)2(Ni(mnt)2)(1), has been prepared and characterized by elemental analyses, IR, ESI-MS spectra, single crystal X-ray diffraction and magnetic measurements. Compound 1 crystallizes in the orthorhombic space group Pnma, a=20.579(4) Å, b=7.078(1) Å, c=17.942(4) Å, α=β=γ=90°, V=2613.3(9) Å3, Z=4. The Ni(III) ions of 1 form a quasi-one-dimensional Zigzag magnetic chain within a Ni(mnt)2 column through Ni?S, S?S, Ni?Ni, or π?π interactions with an Ni?Ni distance of 4.227 Å. Magnetic susceptibility measurements in the temperature range 2-300 K show that 1 exhibits a spin-gap transition around 200 K, and antiferromagnetic interaction in the high-temperature phase (HT) and spin gap in the low-temperature phase (LT). The transition for 1 is second-order phase transition as determined by DSC analyses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号