首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Numerical study of soot formation in counterflow ethylene diffusion flames at atmospheric pressure was conducted using detailed chemistry and complex thermal and transport properties. Soot kinetics was modelled using a semi-empirical two-equation model. Radiation heat transfer was calculated using the discrete-ordinates method coupled with an accurate band model. The calculated soot volume fractions are in reasonably good agreement with the experimental results in the literature. The individual effects of gas and soot radiation on soot formation were also investigated.  相似文献   

2.
The influence of preferential diffusion on soot formation in a laminar ethylene/air diffusion flame was investigated by numerical simulation using three different transport property calculation methods. One simulation included preferential diffusion and the other two neglected preferential diffusion. The results show that the neglect of preferential diffusion or the use of unity Lewis number for all species results in a significant underprediction of soot volume fraction. The peak soot volume fraction is reduced from 8.0 to 2.0 ppm for the studied flame when preferential diffusion is neglected in the simulation. Detailed examination of numerical results reveals that the underprediction of soot volume fraction in the simulation neglecting preferential diffusion is due to the slower diffusion of some species from main reaction zone to PAH and soot formation layer. The slower diffusion of these species causes lower PAH formation rate and thus results in lower soot inception rate and smaller particle surface area. The smaller surface area further leads to smaller surface growth rate. In addition, the neglect of preferential diffusion also leads to higher OH concentration in the flame, which causes the higher specific soot oxidation rate. The lower inception rate, smaller surface growth rate and higher specific oxidation rate results in the lower soot volume fraction when preferential diffusion is neglected. The finding of the paper implies the importance of preferential diffusion for the modeling of not only laminar but maybe also some turbulent flames.  相似文献   

3.
This study integrates new and existing numerical modeling and experimental observations to provide a consistent explanation to observations pertaining flame length and soot volume fractions for laminar diffusion flames. Integration has been attempted by means of scaling analysis. Emphasis has been given to boundary layer flames. For the experiments, ethylene is injected through a flat porous burner into an oxidizer flowing parallel to the burner surface. The oxidizer is a mixture of oxygen and nitrogen, flowing at various velocities. All experiments were conducted in microgravity to minimize the role of buoyancy in distorting the aerodynamics of the flames. A previous numerical study emphasizing fuel transport was extended to include the oxidizer flow. Fictitious tracer particles were used to establish the conditions in which fuel and oxidizer interact. This allowed establishing regions of soot formation and oxidation as well as relevant characteristic length and time scales. Adequate scaling parameters then allow to establish explanations that are consistent for different burner configurations as well as “open-tip” and “closed-tip” flames.  相似文献   

4.
We report the first quantitative and calibration-free in situ C2H2 measurement in a flame environment using direct Tunable Diode Laser Absorption Spectroscopy(TDLAS). Utilizing a fiber-coupled Distributed Feedback diode laser near 1535 nm we measured spatially resolved, absolute C2H2 concentration profiles in a laminar non-premixed CH4/air flame supported on a modified Wolfhard-Parker slot burner with N2 purge slots to minimize end flames. We developed a wavelength tuning scheme combining laser temperature and current modulation to record with a single diode laser a mesh of 37 overlapping spectral windows and generate an ∼7 nm (30 cm−1) wide, high-resolution absorption spectrum centered at 1538 nm. Experimental C2H2 spectra in a reference cell showed excellent agreement with simulations using HITRAN2004 data. The enhanced wavelength coverage was needed to establish correct C2H2 line identification and selection in the very congested high temperature flame spectra and led to the P17e line as the only candidate for in situ detection of C2H2 in the flame. We used highly efficient optical disturbance correction algorithms for treating transmission and background emission fluctuations in combination with a multiple Voigt line Levenberg-Marquardt fitting algorithm and Pt/Rh thermocouple measurements to achieve fractional optical resolutions of up to 4 × 10−5 OD (1σ) in the flame (T up to 2000 K). Temperature dependent C2H2 detection limits for the P17e line were 60 to 480 ppm. By translating the burner through the laser beam with a DC motor we obtained spatially resolved, absolute C2H2 concentration profiles along the flame sheet with 0.5 mm spatial resolution as measured with a knife edge technique. The TDLAS-based, transverse C2H2 concentration profiles without any scaling are in excellent agreement with published mass spectrometric C2H2 data for the same flame supported on a similar burner, thus validating our calibration-free TDLAS measurements.  相似文献   

5.
A numerical study is conducted of methane–air coflow diffusion flames at microgravity (μg) and normal gravity (1g), and comparisons are made with experimental data in the literature. The model employed uses a detailed gas phase chemical kinetic mechanism that includes PAH formation and growth, and is coupled to a sectional soot particle dynamics model. The model is able to accurately predict the trends observed experimentally with reduction of gravity without any tuning of the model for different flames. The microgravity sooting flames were found to have lower temperatures and higher volume fraction than their normal gravity counterparts. In the absence of gravity, the flame radii increase due to elimination of buoyance forces and reduction of flow velocity, which is consistent with experimental observations. Soot formation along the wings is seen to be surface growth dominated, while PAH condensation plays a more major role on centreline soot formation. Surface growth and PAH growth increase in microgravity primarily due to increases in the residence time inside the flame. The rate of increase of surface growth is more significant compared to PAH growth, which causes soot distribution to shift from the centreline of the flame to the wings in microgravity.  相似文献   

6.
Flame shape is an important observed characteristic of flames that can be used to scale flame properties such as heat release rates and radiation. Flame shape is affected by fuel type, oxygen levels in the oxidiser, inverse burning and gravity. The objective of this study is to understand the effect of high oxygen concentrations, inverse burning, and gravity on the predictions of flame shapes. Flame shapes are obtained from recent analytical models and compared with experimental data for a number of inverse and normal ethane flame configurations with varying oxygen concentrations in the oxidiser and under earth gravity and microgravity conditions. The Roper flame shape model was extended to predict the complete flame shapes of laminar gas jet normal and inverse diffusion flames on round burners. The Spalding model was extended to inverse diffusion flames. The results show that the extended Roper model results in reasonable predictions for all microgravity and earth gravity flames except for enhanced oxygen normal diffusion flames under earth gravity conditions. The results also show trends towards cooler flames in microgravity that are in line with past experimental observations. Some key characteristics of the predicted flame shapes and parameters needed to describe the flame shape using the extended Roper model are discussed.  相似文献   

7.
The effects of pressure on soot formation and the structure of the temperature field were studied in co-flow methane-air laminar diffusion flames over a wide pressure range, from 10 to 60 atm in a high-pressure combustion chamber. The selected fuel mass flow rate provided diffusion flames in which the soot was completely oxidized within the visible flame envelope and the flame was stable at all pressures considered. The spatially resolved soot volume fraction and soot temperature were measured by spectral soot emission as a function of pressure. The visible (luminous) flame height remained almost unchanged from 10 to 100 atm. Peak soot concentrations showed a strong dependence on pressure at relatively lower pressures; but this dependence got weaker as the pressure is increased. The maximum conversion of the fuel’s carbon to soot, 12.6%, was observed at 60 atm at approximately the mid-height of the flame. Radial temperature gradients within the flame increased with pressure and decreased with flame height above the burner rim. Higher radial temperature gradients near the burner exit at higher pressures mean that the thermal diffusion from the hot regions of the flame towards the flame centerline is enhanced. This leads to higher fuel pyrolysis rates causing accelerated soot nucleation and growth as the pressure increases.  相似文献   

8.
This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier–Stokes (FANS) equation set closed by a buoyancy-modified k-? model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.  相似文献   

9.
Recent advances in the field of laser desorption/laser ionization mass spectrometry (LD/LI/MS) have renewed interest in these separation methods for fast analysis of chemical species adsorbed on soot particles. These techniques provide mass-separation of the desorbed phase with high selectivity and sensitivity and require very small soot samples. Combining LD/LI/MS with in situ measurements of soot and gaseous species is very promising for a better understanding of the early stage of soot growth in flames. In this work, three lightly sooting laminar jet flames (a methane diffusion flame and two premixed acetylene flames of equivalence ratio (?) = 2.9 and 3.5) were investigated by combining prompt and 50 ns-delayed laser-induced incandescence (LII) for spatially resolved measurements of soot volume fraction (fv) and laser-induced fluorescence (LIF) of polycyclic aromatic hydrocarbons (PAH). Soot and PAH calibration is performed by two-colour cavity ring-down spectroscopy (CRDS) at 1064 and 532 nm. Soot particles were sampled in the flames and analysed by LD/LI/Time-of-flight- MS. Soot samples are cooled to −170 °C to avoid adsorbed phase sublimation (under high vacuum in the TOF-MS). Our set-up is novel because of its ability to measure very low concentration of soot and PAH together with the ability to identify a large mass range of PAHs adsorbed on soot, especially volatile two-rings and three-rings PAHs. Studied flames exhibited a peak fv ranging from 15 ppb (acetylene, ? = 2.9) to 470 ppb (acetylene, ? = 3.5). Different mass spectra were found in the three flames, each exhibiting one predominant PAH mass; 202 amu (4-rings) in methane, 178 amu (3-rings) in acetylene,? = 2.9 and 128 amu (2-rings) in acetylene, ? = 3.5. These variations with flame condition contrasts with other recent studies and is discussed. The other PAH masses ranged from 102 (C8H6) to 424 amu (C34H16) and are well predicted by the stabilomer grid of Stein and Farr.  相似文献   

10.
The influence of oxygen (O2) concentration and inert on the sooting and burning behavior of large ethanol droplets under microgravity conditions was investigated through measurements of burning rate, flame temperature, sootshell diameter, and soot volume fraction. The experiments were performed at the NASA Glenn Research Center (GRC) 2.2 s drop tower in Cleveland, OH. Argon (Ar), helium (He), and nitrogen (N2) were used as the inerts and the O2 concentration was varied between 21% and 50% mole fraction at 2.4 atm. The unique configuration of spherically symmetric droplet flames enables effective control of sooting over a wide range of residence time of fuel vapor transport, flame temperature, and regimes of sooting to investigate attendant influences on burning behavior of droplets. For all inert cases, soot volume fraction initially increased as a function of the O2 concentration. The highest soot volume fractions were measured for experiments in Ar environments and the lowest soot volume fractions were measured for the He environments. These differences were attributed to the changes in the residence time for fuel vapor transport and the flame temperature. For the He inert and N2 inert cases, the soot volume fraction began to decrease after reaching a maximum value. The competition between the influence of residence time, rate of pyrolysis reactions, and soot oxidation can lead to this interesting behavior in which the soot volume fraction varies non-monotonically with increase in O2 concentration. These experiments have developed new understanding of the burning and sooting behaviors of ethanol droplets under various O2 concentrations and inert substitutions.  相似文献   

11.
A numerical and experimental study is performed to investigate soot formation from jet fuel in a laminar coflow diffusion flame. The combustion chemistry of the fuel is simulated using (1) the MURI jet fuel surrogate (Dooley et al. 2012) with a modestly reduced Ranzi mechanism (Ranzi et al. 2012), and (2) the recently proposed HyChem model (Xu et al. 2018) combined with the KAUST PAH mechanism 2 (Wang et al. 2013). The two reaction mechanisms are coupled with a sectional soot model to simulate a coflow diffusion flame of methane doped with the MURI jet fuel surrogate. The combined laser extinction and two-angle elastic light scattering method is used to perform non-intrusive in situ measurements of soot volume fraction, primary particle diameter and number density. The good agreement including soot particle size and number density between the experimental data and the simulation results computed with the reduced Ranzi mechanism demonstrate the robustness of the soot model to changes in fuel composition, as the model parameters are unchanged with a previous numerical study of soot formation of n-propylbenzene/n-dodecane mixtures (Zhang and Thomson, 2018). The computation with the combined HyChem/KAUST mechanism predicts similar results as the computation with the detailed chemistry of the reduced Ranzi mechanism for fuel breakdown, thus the basic premise of the HyChem model that the fuel decomposition process can be greatly simplified with the lumped reaction steps is supported. The results also show that by adding a PAH growth scheme to the HyChem model, the approach can be used to predict soot formation from jet fuel combustion in a laminar coflow diffusion flame. Finally, the dependency of the soot prediction on PAH chemistry is discussed and it is suggested that more experimental data is needed to validate the PAH mechanism and improve the predictive accuracy of the model.  相似文献   

12.
In this paper we make use of a detailed particle model and stochastic numerical methods to simulate the particle size distributions of soot particles formed in laminar premixed flames. The model is able to capture the evolution of mass and surface area along with the full structural detail of the particles. The model is validated against previous models for consistency and then used to simulate flames with bimodal and unimodal soot particle distributions. The change in morphology between the particles from these two types of flames provides further evidence of the interplay among nucleation, coagulation, and surface rates. The results confirm the previously proposed role of the strength of the particle nucleation source in defining the instant of transition from coalescent to fractal growth of soot particles.  相似文献   

13.
Numerical simulations of laminar coflow methane/air diffusion flames at atmospheric pressure and different gravity levels were conducted to gain a better understanding of the effects of gravity on soot formation by using relatively detailed gas-phase chemistry and complex thermal and transport properties coupled with a semi-empirical two-equation soot model. Thermal radiation was calculated using the discrete-ordinates method coupled with a non-grey model for the radiative properties of CO, CO2, H2O, and soot. Calculations were conducted for three coflow air velocities of 77.6, 30, and 5 cm/s to investigate how the coflowing air velocity affects the flame structure and soot formation at different levels of gravity. The coflow air velocity has a rather significant effect on the streamwise velocity and the fluid parcel residence time, especially at reduced gravity levels. The flame height and the visible flame height in general increase with decreasing the gravity level. The peak flame temperature decreases with decreasing either the coflow air stream velocity or the gravity level. The peak soot volume fraction of the flame at microgravity can either be greater or less than that of its normal gravity counterpart, depending on the coflow air velocity. At sufficiently high coflow air velocity, the peak soot volume fraction increases with decreasing the gravity level. When the coflow air velocity is low enough, soot formation is greatly suppressed at microgravity and extinguishment occurs in the upper portion of the flame with soot emission from the tip of the flame owing to incomplete oxidation. The numerical results provide further insights into the intimate coupling between flame size, residence time, thermal radiation, and soot formation at reduced gravity level. The importance of thermal radiation heat transfer and coflow air velocity to the flame structure and soot formation at microgravity is demonstrated for the first time.  相似文献   

14.
The burning and sooting behaviors of isolated fuel droplets for ethanol and n-decane are examined in high concentration of the ambient carbon dioxide under microgravity. A quartz fiber with the diameter of 50 μm maintains the droplet in the center of the combustion chamber and the range in the initial droplet diameter is from 0.30 to 0.80 mm. The ambience consists of oxygen, nitrogen and carbon dioxide. The concentration of oxygen is 21% in volume, and that of carbon dioxide is varied from 0% to 60% in volume. Detail measurements of the projected image of the droplet are conducted by using a high speed video camera and the effective droplet diameter squared are calculated from the surface area of the rotating body of the projected object. From evolutions of the droplet diameter squared, the instantaneous burning rates are calculated. Time history of the instantaneous burning rate clearly represents the droplet combustion events, such as the initial thermal expansion, ignition and following combustion. The instantaneous burning rate for n-decane shows an increasing trend during combustion, while that for non-sooting ethanol remains almost constant or shows a decreasing trend. A slight stepwise increase in the instantaneous burning rate is observed for larger n-decane droplets in air, which may be attributed to soot accumulation. However, this behavior of the burning rate disappears in higher concentration of carbon dioxide. Direct observation of the droplet flame indicates suppression of soot production in higher concentration of carbon dioxide and the suppression is enhanced for smaller droplet.  相似文献   

15.
Direct numerical simulations with a C3-chemistry model have been performed to investigate the transient behavior and internal structure of flames propagating in an axisymmetric fuel jet of methane, ethane, ethylene, acetylene, or propane in normal earth gravity (1g) and zero gravity (0g). The fuel issued from a 3-mm-i.d. tube into quasi-quiescent air for a fixed mixing time of 0.3 s before it was ignited along the centerline where the fuel–air mixture was at stoichiometry. The edge of the flame formed a vigorously burning peak reactivity spot, i.e., reaction kernel, and propagated through a flammable mixture layer, leaving behind a trailing diffusion flame. The reaction kernel broadened laterally across the flammable mixture layer and possessed characteristics of premixed flames in the direction of propagation and unique flame structure in the transverse direction. The reaction kernel grew wings on both fuel and air sides to form a triple-flame-like structure, particularly for ethylene and acetylene, whereas for alkanes, the fuel-rich wing tended to merge with the main diffusion flame zone, particularly methane. The topology of edge diffusion flames depend on the properties of fuels, particularly the rich flammability limit, and the mechanistic oxidation pathways. The transit velocity of edge diffusion flames, determined from a time series of calculated temperature field, equaled to the measured laminar flame speed of the stoichiometric fuel–air mixtures, available in the literature, independent of the gravity level.  相似文献   

16.
This paper describes the unusual sooting structure of three flames established by the laminar recirculation zones of a centerbody burner. The vertically mounted burner consists of an annular air jet and a central fuel jet separated by a bluff-body. The three ethylene fueled flames are identified as: fully sooting, donut-shape, and ring-shape sooting flames. Different shapes of the soot structures are obtained by varying the N2 dilution in the fuel and air jets while maintaining a constant air and fuel velocity of 1.2 m/s. All three flames have the unusual characteristic that the soot, entrained into the recirculation zone, follows discrete spiral trajectories that terminate at the center of the vortex. The questions are what cause: (1) the unusual sooting structures and (2) the spiral trajectories of the soot? Flame photographs, laser sheet visualizations, and calculations with a 2D CFD-based code (UNICORN) are used to answer these questions. The different sooting structures are related to the spiral transport of the soot, the spatial location of the stoichiometric flame surface with respect to the vortex center, and the burnout of the soot particles. Computations indicate that the spiral trajectories of the soot particles are due to thermophoresis.  相似文献   

17.
Soot formation from combustion devices, which tend to operate at high pressure, is a health and environmental concern, thus investigating the effect of pressure on soot formation is important. While most fundamental studies have utilised the co-flow laminar diffusion flame configuration to study the effect of pressure on soot, there is a lack of investigations into the effect of pressure on the flow field of diffusion flames and the resultant influence on soot formation. A recent work has displayed that recirculation zones can form along the centreline of atmospheric pressure diffusion flames. This present work seeks to investigate whether these zones can form due to higher pressure as well, which has never been explored experimentally or numerically. The CoFlame code, which models co-flow laminar, sooting, diffusion flames, is validated for the prediction of recirculation zones using experimental flow field data for a set of atmospheric pressure flames. The code is subsequently utilised to model ethane-air diffusion flames from 2 to 33 atm. Above 10 atm, recirculation zones are predicted to form. The reason for the formation of the zones is determined to be due to increasing shear between the air and fuel steams, with the air stream having higher velocities in the vicinity of the fuel tube tip than the fuel stream. This increase in shear is shown to be the cause of the recirculation zones formed in previously investigated atmospheric flames as well. Finally, the recirculation zone is determined as a probable cause of the experimentally observed formation of a large mass of soot covering the entire fuel tube exit for an ethane diffusion flame at 36.5 atm. Previously, no adequate explanation for the formation of the large mass of soot existed.  相似文献   

18.
The outwardly propagating spherical flame (OPF) method is popularly used to measure the laminar flame speed (LFS). Recently, great efforts have been devoted to improving the accuracy of the LFS measurement from OPF. In the OPF method, several assumptions are made. For examples, the burned gas is assumed to be static and in chemical equilibrium. However, these assumptions may not be satisfied under certain conditions. Here we consider low-pressure and super-adiabatic propagating spherical flames, for which chemical non-equilibrium exists and the burned gas may not be static. The objective is to assess the chemical non-equilibrium effects on the accuracy of LFS measurement from the OPF method. Numerical simulations considering detailed chemistry and transport are conducted. Stoichiometric methane/air flames at sub-atmospheric pressures and methane/oxygen flames at different equivalence ratios are considered. At low pressures, broad heat release zone is observed and the burned gas cannot quickly reach the adiabatic flame temperature, indicating the existence of chemical non-equilibrium of burned gas. Positive flow in the burned gas is identified and it is shown to become stronger at lower initial pressure. Consequently, the LFS measurement from OPF at low pressures is not accurate if the burned gas is assumed to be static and at chemical equilibrium. For super-adiabatic spherical flames, the burned gas speed is found to be negative due to the local temperature overshoot at the flame front. Such negative speed of burned gas can also reduce the accuracy of LFS measurement. It is recommended that the direct method measuring both flame propagation speed and flow speed of unburned gas should be used to determine the LFS at low pressures or for mixtures with super-adiabatic flame temperature.  相似文献   

19.
The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.  相似文献   

20.
Steady-state global chemistry calculations for 20 different flames were carried out using an axisymmetric Computational Fluid Dynamics (CFD) code. Computational results for 16 flames were compared with flame images obtained at the NASA Glenn Research Center. The experimental flame data for these 16 flames were taken from Sunderland et al. [4 Sunderland, P. B., Krishnan, S. S and Gore, J. P. 2004. Effects of oxygen enhancement and gravity on normal and inverse laminar jet diffusion flames. Combust. Flame, 136: 254256. [Crossref], [Web of Science ®] [Google Scholar]] which included normal and inverse diffusion flames of ethane with varying oxidiser compositions (21, 30, 50, 100% O2 mole fraction in N2) stabilised on a 5.5 mm diameter burner. The test conditions of this reference resulted in highly convective inverse diffusion flames (Froude numbers of the order of 10) and buoyant normal diffusion flames (Froude numbers ~0.1). Additionally, six flames were simulated to study the effect of oxygen enhancement on normal diffusion flames. The enhancement in oxygen resulted in increased flame temperatures and the presence of gravity led to increased gas velocities. The effect of gravity-variation and oxygen enhancement on flame shape and size of normal diffusion flames was far more pronounced than for inverse diffusion flames. For normal-diffusion flames, their flame-lengths decreased (1 to 2 times) and flames-widths increased (2 to 3 times) when going from earth-gravity to microgravity, and flame height decreased by five times when going from air to a pure oxygen environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号