首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Octacalcium phosphate (OCP) powder was produced by precipitating 250 mL Ca(CH3COO)2 0.04 M into 750 L of phosphate solution (5 mmol Na2HPO4 and 5 mmol NaH2PO4) at a constant temperature of 60 °C and pH 5, which resulted in a dry white powder. X-ray diffraction (XRD), transmission electron microscopy (TEM) analysis, and the electron diffraction pattern (SAED) all showed only OCP. Hydroxyapatite (HAP) was directly obtained through hydrolysis of the powder. The total transformation of OCP into HAP was registered over a period of 6 h. During the first 30 min of hydrolysis both phases coexisted. The two phases and the OCP-HAP interface were structurally analyzed through XRD and TEM. OCP parameters (calculated by the Rietveld method) are a=19.70, b=9.50, c=6.85 Å; α=90.03°, β=92.48°, γ=108.32° (triclinic P-1) with average crystal size of 13.5±0.2 nm, while HAP parameters were a=9.45, c=6.87 Å (hexagonal P63/m) with average crystal size of 16.9±0.2 nm.  相似文献   

2.
The crystal structure of U6Fe5Al8Si9 was re-determined by electron crystallography, using selected area electron diffraction (SAED) and high resolution (HRTEM) images, taken along the [0 0 1] direction. The obtained results are very similar to those found previously by X-ray powder diffraction. The differences between the atomic positions found by SAED and HRTEM images and those found by X-ray powder diffraction were 0.11 and 0.08 Å, respectively.  相似文献   

3.
Nanostructured Bi2S3 was hydrothermally produced from Bi2O3 and thiocarbohydrazide in acidic solutions containing PVA, PEG and PVP. By using XRD, SAED and Raman spectrometry, the products were orthorhombic Bi2S3, with four vibration modes at 139.6, 253.7, 310 and 968.9 cm−1. The phase was also in accordance with the diffraction patterns obtained by simulation. SEM, TEM and HRTEM show that the products are clusters of nanorods produced in polymer-free solution, and nanostructured flowers of nanospears, nanorods and nanoplates in the respective PVA-, PEG- and PVP-added solutions, with their growths in the same direction of [0 0 1]. A formation mechanism was also proposed according to their phase and morphologies.  相似文献   

4.
BaMoO4 and BaWO4 nanocrystals were synthesized from Ba(NO3)2 and Na2MeO4 (Me=Mo and W) solutions using 50% of 600 W microwave irradiation for 20 min. The products were characterized using X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and photoluminescence (PL) spectrophotometry. They show that the products are good dispersed nanocrystals (poly-nanocrystals) of single-phase scheelite tetragonal structure with the vibration modes corresponding to the molybdate and tungstate compounds. Their photoluminescence was detected at 415 and 392 nm for BaMoO4 and BaWO4, respectively.  相似文献   

5.
Metal tungstates (MeWO4, Me = Ba, Sr and Ca) were successfully prepared using the corresponding Me(NO3)2·2H2O and Na2WO4·2H2O in ethylene glycol by the 5 h sonochemical process. The tungstate phases with scheelite structure were detected with X-ray diffraction (XRD) and selected area electron diffraction (SAED). Their calculated lattice parameters are in accord with those of the JCPDS cards. Transmission electron microscopy (TEM) revealed the presence of nanoparticles composing the products. Their average sizes are 42.0 ± 10.4, 18.5 ± 5.1 and 13.1 ± 3.3 nm for Me = Ba, Sr and Ca, respectively. Interplanar spaces of the crystals were also characterized with high-resolution TEM (HRTEM). Their crystallographic planes are aligned in systematic array. Six different vibration wavenumbers were detected using Raman spectrometer and are specified as ν1(Ag), ν3(Bg), ν3(Eg), ν4(Bg), ν2(Ag) and free rotation. Fourier transform infrared (FTIR) spectra provided the evidence of scheelite structure with W-O anti-symmetric stretching vibration of [WO4]2− tetrahedrons at 786-883 cm−1. Photoluminescence emission of the products was detected over the range of 384-416 nm.  相似文献   

6.
Nano-sized Tb-doped YAG phosphor particles were synthesized by a mixed solvo-thermal method using stoichiometric amounts of inorganic aluminum and yttrium salts. The formation of YAG:Tb was investigated by means of XRD and IR spectra. The pure crystalline-phase YAG was prepared under moderate synthesis conditions (300 °C and 10 MPa), indicating that ethanol partly replaces water as the solvent, thus favoring the formation of YAG. TEM images showed that YAG:Tb phosphor particles sintered at 300 °C were basically of spherical shape, with good dispersion about a particle size of around 80 nm. The crystalline YAG:Tb showed green emission with 5D47F6 (544 nm) as the most prominent group. The PL intensity and crystallinity of YAG:Tb phosphors increases with increasing synthesis temperature, and reaches maximum brightness at 300 °C, which is lower than that exhibited by a commercial product.  相似文献   

7.
High-pressure phase transition of Ta2NiO6 with the trirutile-type structure was investigated from the viewpoint of crystal chemistry. A new quenchable high-pressure phase was found in the pressure range higher than 7 GPa and 900°C. The high-pressure phase has an orthorhombic cell (a=4.797(1) Å, b=5.153(2) Å and c=14.85(1) Å and space group; Abm2), and it is more dense by 9.6% than the trirutile-structured phase. Infrared spectra of the trirutile-type phase and the high-pressure phase show that Ni2+ ions in the high-pressure phase are still in octahedral sites. The crystal structure of the high-pressure phase is considered as a cation-ordering trifluorite-type structure, which can be stabilized by a crystal field effect of Ni2+ ions.  相似文献   

8.
A Li hexagonal boron nitride (hBN) intercalation compound (Li-hBNIC) was successfully synthesized by the annealing of powder or bulk hBN and Li at 1523 K. By an XRD analysis, a strong peak indicating the expansion of BN interlayer distance due to Li-intercalation was observed at an angle lower than that of hBN (0 0 2). In the sample, the interlayer distance and its expansion ratio were 3.76 Å and 12.6%, respectively, and these values were similar to those of a first stage Li-graphite intercalation compound (Li-GIC), LiC6. The electrical conductivity of the sample was increased by several orders of magnitude, from 10−15 to 10−7 Ω−1 cm−1 at room temperature. Li de-intercalation was confirmed by the dispersion of the sample in purified water.  相似文献   

9.
The H2 reduced NiFe2−xCrxO4 can be used to decompose CO2 to C repeatedly. A series of nanocrystalline Ni-ferrite doping different contents of Cr3+ were synthesized by mixed ions co-precipitation method and characterized by XRD, BET and TEM. The results showed that their crystallite sizes were 1-2 nm and BET surface area changed from 220 to 285 m2/g. The evaluation of the activity and stability indicated that Ni-ferrite with 4 wt% Cr3+ dopant could be used repeatedly as many as 60 times and was transformed to FeyNi1−y (0<y<1) alloy and Fe5C2 gradually during the cycle decomposition of CO2 to carbon, especially for no Cr3+ sample. After the 60th reaction, although NiFe2O4 phase just remained 2.1 wt%, the decomposition activity of Ni-ferrite with 4 wt% Cr3+ was still 60% of initial activity. This fact suggests that nanocrystalline FeyNi1−y (0<y<1) alloy from the cycle reaction can contribute to the decomposition of CO2. The results from scanning electron microscopy (SEM), TEM and XRD show that the deposited carbon from CO2 decomposition consisted of amorphous, crystallite and carbon nanotubes.  相似文献   

10.
Aurivillius SrBi2(Nb0.5Ta0.5)2O9 (SBNT 50/50) ceramics were prepared using the conventional solid-state reaction method. Scanning electron microscopy was applied to investigate the grain structure. The XRD studies revealed an orthorhombic structure in the SBNT 50/50 with lattice parameters a=5.522 Å, b=5.511 Å and c=25.114 Å. The dielectric properties were determined by impedance spectroscopy measurements. A strong low frequency dielectric dispersion was found to exist in this material. Its occurrence was ascribed to the presence of ionized space charge carriers such as oxygen vacancies. The dielectric relaxation was defined on the basis of an equivalent circuit. The temperature dependence of various electrical properties was determined and discussed. The thermal activation energy for the grain electric conductivity was lower in the high temperature region (T>303.6 °C, Ea−ht=0.47 eV) and higher in the low temperature region (T<303.6 °C, Ea−lt=1.18 eV).  相似文献   

11.
AWO4 (A = Ca, Sr) was prepared from metal salts [Ca(NO3)2·4H2O or Sr(NO3)2], Na2WO4·2H2O and different moles of cetyltrimethylammonium bromide (CTAB) in water by cyclic microwave irradiation. The structure of AWO4 was characterized by X-ray diffraction (XRD) and selected area electron diffraction (SAED). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed the presence of nanoparticles in clusters with different morphologies; spheres, peaches with notches, dumb-bells and bundles, influenced by CTAB. Six Raman vibrational peaks of scheelite structure were detected at 908, 835, 793, 399, 332 and 210 cm−1 for CaWO4 and 917, 833, 795, 372, 336 and 192 cm−1 for SrWO4, which are assigned as ν1(Ag), ν3(Bg), ν3(Eg), ν4(Bg), ν2(Ag) and νf.r.(Ag), respectively. Fourier transform infrared (FTIR) spectra provided the evidence of W-O stretching vibration in [WO4]2− tetrahedrons at 793 cm−1 for CaWO4 and 807 cm−1 for SrWO4. The peaks of photoluminescence (PL) spectra were at 428-434 nm for CaWO4, and 447-451 nm for SrWO4.  相似文献   

12.
The role of pH and calcium ions in the adsorption of an alkyl N-aminodimethylphosphonate on mild steel (E24) surfaces was investigated by XPS. Fe 2p3/2 and O 1s spectra show that the oxide/hydroxide layer developed on the steel surface, immersed in the diphosphonate solution (7 ≤ pH ≤ 13, without Ca2+) or in a filtered cement solution (pH 13, 15.38 mmol l−1 of Ca2+), consists of Fe2O3, covered by a very thin layer of FeOOH (goethite). The total thickness of the oxide/hydroxide layer is ∼3 nm and is independent of the pH and the presence/absence of Ca2+. In the absence of Ca2+ ions, the N 1s and P 2p spectra reveal that the adsorption of the diphosphonate on the outer layer of FeOOH takes place only for pH lower than the zero charge pH of goethite (7.55). At pH 7, the adsorbed diphosphonate layer is continuous and its equivalent thickness is ∼24 Å (monolayer). In the presence of Ca2+ ions, the C 1s and Ca 2p signals indicate that calcium is present on the steel surface as calcium phosphonate (and Ca(OH)2, in very small amount). The adsorption of the diphosphonate molecules on the steel surface is promoted in alkaline solution (pH > 7.55) by the doubly charged Ca2+ ions that bridge the O of goethite and the P-O groups of the diphosphonate molecules. The measured values for the Ca/P intensity ratio are in the range 0.75-1, which suggests that the diphosphonate molecules are adsorbed on steel forming a polymer cross-linked by calcium ions through their phosphono groups. In the presence of Ca2+ ions in alkaline solution, the adsorbed diphosphonate layer is discontinuous and the surface coverage is found to be ∼34%.  相似文献   

13.
We describe one convenient synthesis route to boron nitride (BN) nanotube by the reaction of boron powder, iron oxide, and ammonium chloride at 600 °C for 12 h. Characterized by XRD, FTIR, XPS, TEM and SAED, the composition and morphology of the products are confirmed. The possible reaction mechanism is also discussed.  相似文献   

14.
Thin films of polytetrafluoroethylene (PTFE) were deposited by pulsed electron deposition (PED) technique. The transmission electron microscopy (TEM) image of the RT fabricated (20 Å thick) film on carbon coated copper grid shows crystalline nature. Infrared spectra show one to one correspondence between PED ablated film and the PTFE bulk target. The asymmetrical and symmetrical -CF2- stretching modes were observed at 1220 and 1156 cm−1, respectively. The -CF2- wagging and bending modes occur at 644 and 512 cm−1, respectively. X-ray diffraction patterns of the film deposited at room temperature (RT) show oriented film along (1 0 0) plane of hexagonal structure and the crystalline nature is retained up to 300 °C on vacuum annealing. The room temperature fabricated film shows smooth and pin hole free surface whereas post-annealing brings discontinuity, roughness and pin holes.  相似文献   

15.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

16.
Aqueous CdWO4 QDs were synthesized by the reaction of CdCl2 and Na2WO4 in the presence of mercaptoacetic acid (TGA) as capping reagent. The crystal morphology, particle size and its distribution of as-prepared products were characterized by transmission electron microscopy (TEM, SAED) atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), and photon correlation spectroscopy (PCS), respectively. Qualitative assays for functional groups on the QDs’ surface were measured by fourier transform infrared spectroscopy (FTIR). Photoluminescence properties of QDs were studied by photoluminescence spectroscopy (PL). The results showed that the single QD with diameter of about 8 ± 2 nm was single-crystal. The particle size distribution of QDs was normal. Infrared absorption bands of carboxylic group on the surface of CdWO4 QDs were observed around 1610-1550 cm−1 (nonsymmetrical vibration of -COO) and 1400 cm−1 (symmetric vibration of C-O). With reaction-time going, PL peak position shifted from 498 to 549 nm and intensity of PL increased first and then decreased. PL peak position of QDs was blue-shift compared with 570 nm WO66− luminescence center of bulk CdWO4.  相似文献   

17.
This paper outlines the discovery of a newly characterised isomorph of ferrous chloride tetrahydrate, Fe(H2O)6·FeCl4(H2O)2, which was initially identified by X-ray crystallography and confirmed by Mössbauer spectroscopy. The X-ray analysis identified the space group as P21/c with essentially the same unit cell dimensions as the well-known isomorph, FeCl2·4H2O, except that one edge is doubled due to two discrete [Fe(H2O)6]2+ and [FeCl4(H2O)2]2− species per unit cell. Time-series Mössbauer studies revealed this new isomorph to be unstable upon atmospheric exposure, decaying to the well-known structure over a period of days. Density functional theory calculations support an energetically favourable catalytic interconversion involving adsorbed water. A high-precision redetermination on the FeCl2·4H2O crystal structure, which is also in space group P21/c, is also reported, providing the unit cell parameters: a=5.8765(3) Å, b=7.1100(3) Å, c=8.4892(5) Å and β=111.096(1)°.  相似文献   

18.
A theoretical method for studying the inter-relation between electron and molecule structure is proposed on the basis of the complete energy matrices of the electron-electron repulsion, the ligand-field and the spin-orbit coupling for d5 configuration ion in a trigonal ligand-field. As an application, the local distortion structure of (FeCl6)3- coordination complex for Fe3+ ions doped into CdCl2 is investigated. Both the second-order zero-field splitting parameter and fourth-order zero-field splitting parameter are considered simultaneously in the structural investigation. By diagonalizing the complete energy matrices, the local structure distortion parameters ΔR=−0.24 Å, Δθ=2.137° at 26 K and ΔR=−0.203 Å, Δθ=2.515° at 225 K for Fe3+ ions in CdCl2 are determined. These results elucidate a microscopic origin of various ligand-field parameters which are usually used empirically for the interpretation of electron paramagnetic resonance results. It is found that the theoretical results are in good agreement with the experimental values.  相似文献   

19.
The lithium ion conducting solid polymer electrolytes (SPE) based on PVAc-LiClO4 of various compositions were prepared by solution casting technique. Structure and surface morphology characterization were studied by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) measurements, respectively. Thermal and conductivity behavior of polymer-salt complexes were studied by employing differential scanning calorimetry (DSC) and ac impedance measurements, respectively. XRD and SEM analyses indicate the amorphous nature of the polymer-salt complexes. DSC measurements show decrease in Tg with the increase in LiClO4 concentrations. The bulk conductivity of the PVAc:LiClO4 polymer electrolytes was found to vary between 7.6×10−7 and 6.2×10−5 S cm−1 at 303 K with the increase in salt concentration. The temperature dependence of the polymer electrolyte complexes appear to obey Arrhenius law.  相似文献   

20.
Gel polymer electrolytes (GPE) obtained by immobilizing a solution of zinc triflate (ZnTr) in an ionic liquid, namely 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [emim][Tf2N] within a biodegradable polymeric matrix of poly-ε-caprolactone (PCL) were prepared by a simple solvent cast technique for different concentrations of the ionic liquid. The electrolyte with the composition 75 wt% PCL: 25 wt% ZnTr+100 wt% [emim][Tf2N] showed the highest ionic conductivity of 1.1×10−4 S cm−1 at 25 °C and favored by the rich amorphous phase of the GPE as confirmed from room temperature X-ray diffraction analysis (XRD). The morphology of the GPE was examined using scanning electron microscopy (SEM) which revealed the homogeneity of the prepared GPE system. The temperature dependence of electrical conductivity of the GPE followed the Arrhenius behavior. The Zn2+ ionic transport number has been determined to be ~0.62 which denotes the predominant contribution of zinc ion towards total ionic conductivity. The electrochemical stability window of GPE is found to be 2.5 V with a thermal stability upto 200 °C. This eco-friendly and safe electrolyte may be used to fabricate compostable batteries, in future, with a suitable selection of other components of the battery system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号