首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Fe–Co–C alloys, undesirable grain coarsening results from the specific austenite orientation variants that form after the γ→→γ transformations. Tempering of martensite before reheating prevents austenite returning to its original orientation and also limits grain coarsening. However, the reasons for this are unclear. It may be assumed that some differences between cementite formed in tempered and rapidly heated alloys may cause the variation in the final austenite structure. In the present work the orientation relationships between cementite and martensite in two tempered Fe–Co–C alloys have been studied using microbeam electron diffraction in a transmission electron microscope. In both alloys after short-term (rapid heating at 100°C s−1 followed by quench) and long-term (1 and 3 h) tempering treatments the orientation relationships were shown to obey the Isaichev orientation relationships:
However, after rapid tempering, only one carbide variant was found in each crystal, while after long-term tempering, up to three variants were present. This might account for the observed crystallographic reversibility in rapidly heated alloys, contrary to the multiplication of γ variants formed from the long-term tempered martensite.  相似文献   

2.
Mapping of residual stresses at the mesoscale is increasingly practical thanks to technological developments in electron backscatter diffraction (EBSD) and X-ray microdiffraction using high brilliance synchrotron sources. An analysis is presented of a Cu single crystal deformed in compression to about 10% macroscopic strain. Local orientation measurements were made on sectioned and polished specimens using EBSD and X-ray microdiffraction. In broad strokes, the results are similar to each other with orientations being observed that are on the order of 5° misoriented from that of the original crystallite. At the fine scale it is apparent that the X-ray technique can distinguish features in the structure that are much finer in detail than those observed using EBSD even though the spatial resolution of EBSD is superior to that of X-ray diffraction by approximately two orders of magnitude. The results are explained by the sensitivity of the EBSD technique to the specimen surface condition. Dislocation dynamics simulations show that there is a relaxation of the dislocation structure near the free surface of the specimen that extends approximately 650 Å into the specimen. The high spatial resolution of the EBSD technique is detrimental in this respect as the information volume extends only 200 Å or so into the specimen. The X-rays probe a volume on the order of 2 µm in diameter, thus measuring the structure that is relatively unaffected by the near-surface relaxation.  相似文献   

3.
We have studied three-dimensional (3D) structures and growth processes of 14H-type long-period stacking order (LPSO) formed in Mg97Zn1Gd2 cast alloys by single tilt-axis electron tomography (ET) using high-angle annular dark-field scanning transmission electron microscopy. Evolution of the solute-enriched stacking faults (SFs) and the 14H LPSO by ageing were visualised in 3D with a high spatial resolution in multi-scale fields of views from a few nanometres to ~10 μm. Lateral growth of the solute-enriched SFs and the LPSO in the (0?0?0?1)Mg plane is notable compared to the out-of-plane growth in the [0?0?0?1]Mg direction. The 14H LPSO grows at the cost of decomposition of the (Mg, Zn)3Gd-type precipitates, and accompany a change of in-plane edge angles from 30 to 60°. We have updated the Time–Temperature–Transformation diagram for precipitation in Mg97Zn1Gd2 alloys: starting temperatures of both solute-enriched SFs and LPSO formation shifted to a shorter time side than those in the previous diagram.  相似文献   

4.
Intravenously injected microbubbles (MBs) can be utilized as ultrasound contrast agent (CA) resulting in enhanced image quality. A novel CA, consisting of air filled MBs stabilized with a shell of polyvinyl alcohol (PVA) has been developed. These spherical MBs have been decorated with superparamagnetic iron oxide nanoparticles (SPIONs) in order to serve as both ultrasound and magnetic resonance imaging (MRI) CA. In this study, a mathematical model was introduced that determined the shell thickness of two types of SPIONs decorated MBs (Type A and Type B). The shell thickness of MBs is important to determine, as it affects the acoustical properties. In order to investigate the shell thickness, thin sections of plastic embedded MBs were prepared and imaged using transmission electron microscopy (TEM). However, the sections were cut at random distances from the MB center, which affected the observed shell thickness. Hence, the model determined the average shell thickness of the MBs from corrected mean values of the outer and inner radii observed in the TEM sections. The model was validated using simulated slices of MBs with known shell thickness and radius. The average shell thickness of Type A and Type B MBs were 651 nm and 637 nm, respectively.  相似文献   

5.
Abstract

Cherenkov radiation emitted from electron irradiated dielectrics such as mica, quartz and BaTiO3 was detected in a transmission electron microscope with the accelerating voltages of 80 kV to 200 kV. Transition radiation was also observed from metals (Al, Ag, Au) and semiconductors (GaAs, Si). Dependence of their intensities and spectra on accelerating voltage and crystal thickness was investigated.  相似文献   

6.
The high strength:weight ratio of magnesium alloys makes them an ideal metal for automotive and aerospace applications where weight reduction is of significant concern. Unfortunately, magnesium alloys are highly susceptible to corrosion particularly in salt-spray conditions. This has limited their use in the automotive and aerospace industries, where exposure to harsh service conditions is unavoidable. The simplest way to avoid corrosion is to coat the magnesium-based substrate by a process such as electroless plating, which is a low-cost, non line of sight process.Magnesium is classified as a difficult to plate metal due to its high reactivity. This means that in the presence of air magnesium very quickly forms a passive oxide layer that must be removed prior to plating. Furthermore, high aluminium content alloys are especially difficult to plate due to the formation of intermetallic species at the grain boundaries, resulting in a non-uniform surface potential across the substrate and thereby further complicating the plating process.The objective of this study is to understand how the magnesium alloy microstructure influences the surface chemistry of the alloy during both pretreatment and immersion copper coating of the substrate.A combination of scanning electron microscopy, energy dispersive spectroscopy and scanning Auger microscopy has been used to study the surface chemistry at the various stages of the coating process. Our results indicate that the surface chemistry of the alloy is different on the aluminum rich β phase of the material compared to the magnesium matrix which leads to preferential deposition of the metal on the aluminum rich phase of the alloy.  相似文献   

7.
Micro-arc oxidation (MAO) of AZ31B magnesium alloys was studied in alkaline silicate solutions at constant applied current densities. The microstructure, phase composition and elemental distribution of ceramic coatings were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDX). There are two inflections in the voltage-time response, three regions were identifiable and each of the regions was almost linear. The pores with different shapes distributed all over the coating surface, the number of the pores was decreasing, while the diameter was apparently increasing with prolonged MAO treatment time. There were also cracks on the coating surface, resulting from the rapid solidification of the molten oxide. The ceramic coating was comprised of two layers, an outer loose layer and an inner dense layer. The ceramic coating was mainly composed of forsterite phase Mg2SiO4 and MgO; the formation of MgO was similar to conversional anodizing technology, while formation of Mg2SiO4 was attributed to a high temperature phase transformation reaction. Presence of Si and O indicated that the electrolyte components had intensively incorporated into coatings.  相似文献   

8.
High-resolution electron microscopy was applied to analyze the continuous precipitated particles of the γ-Mg17Al12 phase with Pitsch-Schrader OR in the heat-treated AZ91 alloy at 473 K for 8 h. The existence of a continuous precipitated particle with the Pitsch-Schrader OR including the selection of the habit plane and the growth direction in Mg–Al system is rationalized by the constrained coincidence site lattice/constrained complete pattern shift lattice (CCSL/CDSCL) model and the O-lattice theory.  相似文献   

9.
In order to perform correlative light and electron microscopy (CLEM) more precisely, we have modified existing specimen preparation protocols allowing fluorescence retention within embedded and sectioned tissue, facilitating direct observation across length scales. We detail a protocol which provides a precise correlation accuracy using accessible techniques in biological specimen preparation. By combining a pre-embedding uranyl acetate staining step with the progressive lowering of temperature (PLT) technique, a methacrylate embedded tissue specimen is ultrathin sectioned and mounted onto a TEM finder grid for immediate viewing in the confocal and electron microscope. In this study, the protocol is applied to rat uterine epithelial cells in vivo during early pregnancy. Correlative overlay data was used to track changes in filamentous actin that occurs in these cells from fertilization (Day 1) to implantation on Day 6 as part of the plasma membrane transformation, a process essential in the development of uterine receptivity in the rat. CLEM confirmed that the actin cytoskeleton is disrupted as apical microvilli are progressively lost toward implantation, and revealed the thick and continuous terminal web is replaced by a thinner and irregular actin band, with individually distinguishable filaments connecting actin meshworks which correspond with remaining plasma membrane protrusions.  相似文献   

10.
A simple method was put forward in this paper for preparing colloidal copper nanoparticles in aqueous solutions using copper sulfate, gum acacia and hydrazine hydrate as copper precursor, capping agents and reducing agents, respectively, without any inert gas. The formation of nanosized copper was confirmed by its characteristic surface plasmon absorption peak at 604 nm in UV–vis spectra. The transmission electron microscopic (TEM) and scanning electron microscope (SEM) images show that the as-synthesized copper fine spherical particles are distributed uniformly with a narrow distribution from 3 nm to 9 nm. The X-ray diffraction (XRD) and high resolution transmission electron microscopic (HRTEM) demonstrated that the obtained metallic nanoparticles are single crystalline copper nanoparticles. Fourier transform infra-red (FT-IR) spectroscopic data suggested that the copper nanoparticles are coated with gum acacia. The effects of the quantity of gum acacia on the particle size were investigated by the UV–vis spectra and TEM images. The growth process of the nanoparticles was monitored by the UV–vis spectra. The mechanism of the formation copper nanoparticles was discussed. The process raised in this study can be served as an excellent candidate for the preparation of copper nanoparticles in a large scale production.  相似文献   

11.
Anodic coatings were prepared by using microarc oxidation (MAO) on AZ91HP in silicate containing solution (Si-solution) and phytic acid containing solution (P-solution), respectively. The influence of the electrolytes on coating structure, morphology and composition was studied by using X-ray diffraction (XRD), environmental scanning electron microscope (ESEM) and energy dispersive X-ray spectroscopy (EDX). Potentiodynamic polarization test and immersion test were employed to evaluate the corrosion resistance of anodic coatings. Different electrolytes caused the differences in the MAO process and coating properties. The breakdown voltage and the final voltage in P-solution were higher than those in Si-solution. The pore uniformity of anodic coatings obtained in Si-solution (Si-film) was worse than that in P-solution (P-film). XRD analyses indicated that Si-film was amorphous, while P-film consisted of MgO. The corrosion resistance of the sample coated with P-film was better than that with Si-film.  相似文献   

12.
A method is described for the quantification of the sp2, sp3 and intermediate hybridizations in several carbon (C) material samples. Electron energy-loss near-edge spectra were acquired using fast electrons (120 keV) in an electron microscope in nanobeam configuration under the so-called ”magic-angle” condition, and were analysed to extract the sp2 and sp3 fractions, and identify the possible mixed sp2+ε hybridizations. The method consists in projecting the unknown spectra on a basis made up of pure sp2 and sp3 spectra, obtained under the same experimental conditions from graphite and diamond crystals, respectively. The residual spectra contain information about the intermediate hybridizations sp2+ε occurring in the samples. The method was successfully tested on “ab initio” numerically generated spectra relative to amorphous C materials. Finally, it was applied to actual C amorphous and pyrolytic samples, and results were compared to those obtained by the most commonly used, conventional ”three-Gaussian” method. The combined application of electron diffraction and spectroscopy, in the nanobeam configuration, yielded useful information about the atomic and electronic structure from very small volumes of the unknown C material.  相似文献   

13.
Youhei Kakefuda 《Surface science》2007,601(22):5108-5111
We fabricated iron and iron silicide microstructures on an Si(1 0 0) clean surface via electron beam induced process of Fe(CO)5 multilayer and subsequent annealing. The fabricated microstructures were in situ analyzed by Auger electron spectroscopy (AES) and scanning electron microscopy (SEM). We successfully analyzed the coverage and chemical states of the artificial deposited iron structure area-selectively by AES. The artificial iron structure was fabricated after heating to above 350 K to desorb residual Fe(CO)5 species. The artificial structure was observed even after 1190 K annealing by SEM, but AES measurements showed it to be covered by Si atoms. We concluded that the buried iron silicide microstructure was formed by the present process.  相似文献   

14.
《Current Applied Physics》2014,14(3):366-370
Full zinc-blende structure GaAs nanowire grown by a catalyst-free method is reported with As pulse injection in the initial growth time. When As is injected by a pulse while maintaining Ga injection, high Ga supersaturation could easily form nanowire nucleation for the seed formation. Then, continuous GaAs injection contributes to GaAs nanowire growth for increasing length. The GaAs nanowire could grow further with 3.7-μm length and 120-nm diameter. GaAs nanowires were measured by transmission electron microscopy analysis.  相似文献   

15.
Knowledge of the microscopic structure, including three-dimensional (3-D) size and orientation of the precipitates, is essential to fully understand the mechanical properties of the magnesium alloys and designing the alloys with better performance. Analytical TEM with high spatial resolution offers the simultaneous measurements of 3-D size, structure, orientation, composition of the precipitates from one typical sample along an established crystallographic axis. Besides popular Burgers orientation relationship (OR), other ORs such as Pitsch--Schrader OR, Crawley OR, Potter OR and a new OR with the form of [0001]α 1.0° from [311]γ and (11\bar 20)α 2.0° from (03\bar 3)γ between the magnesium matrix and the precipitate γ -Mg17Al12 are identified by TEM imaging and diffraction techniques. As a case study, the thicknesses of the individual precipitates with Burgers OR are further measured to be 100--200~nm through both electron energy-loss spectroscopy and x-ray energy dispersive spectroscopy combining differential x-ray absorption and extrapolation, which are in agreement with the overall 3-D size statistic distribution results obtained through analysing various samples along various directions. Furthermore, the fabricated wedge-shape structure provides a platform on which to study the dependence of the interfacial strain on the variation of the thickness.  相似文献   

16.
Heating of multi-walled carbon nanotubes is often required to obtain clean patterns in the field electron emission microscope (FEEM). A transmission electron micrograph study of morphological changes in the cap structure of multi-walled carbon nanotubes due to heating in vacuum is presented. The lack of significant structural change in the cap structure when specimens were heated to 1925 K for 2.5 h determines an upper bound for the diffusivity of multi-walled carbon nanotube surface atoms, of the order of 10−16 cm2/s at 1925 K.  相似文献   

17.
The surface chemistry on AZ31 and AZ91 magnesium alloys was characterized by X-ray photoelectron spectroscopy (XPS) in the corrosion and the passivation zones. In the corrosion zone, the presence of Mg(OH)2 and MgCO3 species was found in the outer surface, whereas, in the inner layer, the co-existence of Mg(OH)2, MgO and MgCO3 species was observed for both alloys. The presence of Al3+ in the surface electrolyte to form Al2O3/Al(OH)3 and the formation of carbonate product provide a better passivation on the surfaces and retard the chloride-induced corrosion on the materials in the passivation zone.  相似文献   

18.
Fluorapatite is a naturally occurring mineral of the apatite group and it is well known for its high physical and chemical stability. There is a recent interest in this ceramic to be used as a radioactive waste form material due to its intriguing chemical and physical properties. In this study, the nano-sized fluorapatite particles were synthesized using a precipitation method and the material was characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Two well-known methods, called solution-drop and the microtome cutting, were used to prepare the sample for TEM analysis. It was found that the microtome cutting technique is advantageous for examining the particle shape and cross-sectional morphology as well as for obtaining ultra-thin samples. However, this method introduces artifacts and strong background contrast for high-resolution transmission electron microscopy (HRTEM) observation. On the other hand, phase image simulations showed that the solution-drop method is reliable and stable for HRTEM analysis. Therefore, in order to comprehensively analyze the microstructure and morphology of the nano-material, it is necessary to combine both solution-drop and microtome cutting techniques for TEM sample preparation.  相似文献   

19.
Nanometer-sized W-dendrites are fabricated on Al2O3 substrates with an electron-beam-induced deposition process. Dependence of growth of nanodendrite on surface topography is investigated with transmission electron microscopy. It is confirmed that the nanodendrite grows on convex surfaces but not around a hole on a substrate. These are attributed to different distribution of charges on surfaces with different topographies during electron beam irradiation when charges are produced on the surface due to emission of second electrons. The charges accumulate on convex surface and do not distribute around a hole. Therefore, the nanodendrite grows on the former and not on the latter.  相似文献   

20.
Alloying and microstructural modification of surfaces by electron beam has become popular to tailor the surface properties of materials. Surface modification of as-received ductile iron, Ni-plated ductile iron and Ni-plated austempered ductile iron was carried out by electron beam melting to improve the surface properties. Martensitic structure evolved in the heat affected zone and ledeburite structure was produced in the molten zone of the ductile iron. Microhardness of the melted specimens enhanced considerably as compared to the as-received samples. However the microhardness of melted Ni-plated samples is lower than that of the unplated specimens. X-ray diffraction clearly revealed the formation of an austenite and Fe3C phases in the electron beam molten zone. The broadening of peaks suggests refinement of the microstructure as well as internal stresses generated during electron beam melting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号