首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Metabolite concentrations in normal adult brains and in gliomas were quantitatively analyzed by in vivo proton magnetic resonance spectroscopy (MRS) using the fully relaxed water signal as an internal standard. Between January 1998 and October 2001, 28 healthy volunteers and 18 patients with gliomas were examined by in vivo proton MRS. Single-voxel spectra were acquired using the point-resolved spectroscopic (PRESS) pulse sequence with a 1.5 T scanner (TR/TE/Ave = 3000 ms/30 ms/64). The calculated concentrations of N-acetyl-aspartate (NAA), creatine (Cre), choline (Cho), and water(H(2)O) in the normal hemispheric white matter were 23.59 +/- 2.62 mM (mean +/- SD), 13.06 +/- 1.8 mM, 4.28 +/- 0.8 mM, and 47280.96 +/- 5414.85 mM, respectively. The metabolite concentrations were not necessarily uniform in different parts of the brain. The concentrations of NAA and Cre decreased in all gliomas (p < 0.001). The NAA/Cho and NAA/H(2)O ratios can distinguish the normal brain from gliomas and low-grade from high-grade astrocytoma (p < 0.001). The concentration of taurine (Tau) in medulloblastomas was 29.64 +/- 5.76 mM. This is the first quantitative analysis of Tau in medulloblastoma in vivo and confirms earlier in vitro findings.  相似文献   

2.
In vivo proton magnetic resonance spectroscopy studies of human brain   总被引:1,自引:0,他引:1  
In vivo localized proton magnetic resonance spectroscopy (MRS) studies of brain were performed on eighteen normal subjects using the stimulated echo (STE) sequence. The absolute concentrations and proton relaxation times of N-acetyl aspartate (NAA), total creatine (Cr) and choline (Cho) were estimated. The MRS data was quantitatively analyzed for repeatability and intersubject variability. Quantitative analysis indicates excellent spectral repeatability. Significant intersubject variations in [NAA] and [Cr] have been observed while the intersubject variability in [Cho] has been found to be fairly small. Significant intensity distortions have been observed for mixing times longer than 50 msec.  相似文献   

3.
This study was aimed to investigate the significance of absolute concentration of metabolites in glioma patients using proton MR spectroscopy (MRS) with T2 relaxation time correction using three different echo times. The absolute concentrations of metabolites in 7 normal subjects and in 23 gliomas (10 low-grade, 13 high-grade) were obtained by proton MRS using a tissue water signal as an internal standard. The signal intensities of metabolites and tissue water were corrected by T2 relaxation time. In low-grade glioma, the T2 relaxation time of NAA was shorter, and T2 relaxation time of water was prolonged as compared to normal subjects (p < 0.001). In high-grade glioma, the T2 relaxation time of NAA (p < 0.001) and T2 relaxation time of Cr (p < 0.01) were shorter, and T2 relaxation time of water (p < 0.001) was prolonged as compared to normal subjects. Moreover, high-grade gliomas revealed a shorter T2 relaxation time of Cr than low-grade gliomas (p < 0.05). In glioma, NAA and Cr concentration were decreased, and Cho were increased as compared to normal subjects. Moreover, high-grade glioma revealed a significant lower Cr (p < 0.001) and Cho (p < 0.01) concentration compared to low-grade gliomas. Low Cr concentration is the most reliable indicator of malignancy in glioma. Cho concentration did not correlate with malignancy in gliomas.  相似文献   

4.
The precision of cerebral proton magnetic resonance spectroscopy (MRS) measurements is critical both in the clinical setting and for research purposes. Marshall et al. have recently concluded that “disappointing in vivo repeatability…is likely to limit” the ability of MRS to detect modest changes. We present here a comprehensive study of the precision of short- and long-term metabolite peak area ratios and water referenced metabolite peak areas for long echo time point resolved spectroscopy (PRESS) spectra (repetition time (TR) = 2000 ms, echo time (TE) = 136 ms) acquired from the occipital lobes of normal volunteers and a phantom using a conventional whole body 1.5 T MR system and conventional acquisition and analysis protocols. Short-term in vitro precision determined by five repeat scans on five occasions was excellent as measured by a mean coefficient of variation (NAA/Cho = 1.3%, NAA/Cr + PCr = 1.0%, Cho/Cr + PCr = 1.6%, NAA/H2O = 0.5%, Cho/H2O = 1.2%, Cr + PCr/H2O = 0.8%). Long term in vitro precision using 100 spectra acquired over 2 years was also very good (NAA/Cho = 2.7%, NAA/Cr + PCr = 1.4%, Cho/Cr + PCr = 2.2%, NAA/H2O = 1.5%, Cho/H2O = 2.4%, Cr + PCr/H2O = 1.5%). Short-term in vivo precision determined by five repeat scans in a single scanning session on eight subjects was also excellent (NAA/Cho = 5.2%, NAA/Cr + PCr = 3.0%, Cho/Cr + PCr = 6.6%, NAA/H2O = 1.4%, Cho/H2O = 4.9%, Cr + PCr/H2O = 2.7%) and only worsened slightly for long-term in vivo precision determined by five repeat scans on eight subjects over 3 months (NAA/Cho = 5.2%, NAA/Cr + PCr = 4.8%, Cho/Cr + PCr = 7.7%, NAA/H2O = 2.5%, Cho/H2O = 6.4%, Cr + PCr/H2O = 3.8%). We attribute the excellent precision reported here to the use of highly automated techniques for voxel shimming, water suppression and peak area measurements. These results allow us to repudiate Marshall’s assertion regarding disappointing repeatability of in vivo MRS.  相似文献   

5.
Multislice proton magnetic resonance spectroscopic imaging (1H MRSI) at 25 ms echo time was used to measure concentrations of myo-inositol (mI), N-acetylaspartate (NAA), and creatine (Cr) and choline (Cho) in ten normal subjects between 22 and 84 years of age (mean age 44 +/- 18 years). By co-analysis with MRI based tissue segmentation results, metabolite distributions were analyzed for each tissue type and for different brain regions. Measurement reliability was evaluated using intraclass correlation coefficients (ICC). Significant differences in metabolite distributions were found for all metabolites. mI of frontal gray matter was 84% of parietal gray matter and 87% of white matter. NAA of frontal gray matter was 86% of parietal gray matter and 85% of white matter. Cho of frontal gray matter was 125% of parietal gray matter and 59% of white matter and Cho of parietal gray matter was 47% of white matter. Cr of parietal gray matter was 113% of white matter. Reliability was relatively high (ICC from.70 to.93) for all metabolites in white matter and for NAA and Cr in gray matter, though limited (ICC less than.63) for mI and Cho in gray matter. These findings indicate that voxel gray/white matter contributions, regional variations in metabolite concentrations, and reliability limitations must be considered when interpreting 1H MR spectra of the brain.  相似文献   

6.
7.
The CNS involvement is frequently found in human immunodeficiency virus (HIV) infection. The purpose of our study was to determine whether proton magnetic resonance spectroscopy (MRS) could detect early brain involvement in neurologically asymptomatic HIV-infected patients with normal MR imagings and to find the correlation between MRS and the immune status. We performed MRS in 30 HIV seropositive neurologically asymptomatic patients with normal MRI and compared the MRS findings with 13 controls. A statistically significant reduction in N-acetylaspartate (NAA)/creatine (Cr) and N-acetylaspartate (NAA)/choline (Cho) in both centrum semiovale (p < 0.005) and thalamic areas (p < 0.05) was found. There is no statistically significant difference as to choline (Cho)/creatine (Cr) and myoinositol (mI)/creatine (Cr) ratios in both regions. The difference of NAA/Cr was more pronounced in the white matter than in the gray matter. As for the immune status, there was a trend towards correlation between CD4 counts and NAA/Cr but devoid of statistical significance. Our results suggest that MRS is more sensitive than conventional MR imaging in detecting CNS involvement in neurologically asymptomatic HIV patients and may, therefore, be used for early detection of brain damage induced by HIV.  相似文献   

8.

Objective

To determine whether metabolite ratios in multivoxel 3D proton MR spectroscopy (1H MRS) is different between low-grade and high-grade gliomas and may be useful for glioma grading.

Materials and Methods

Thirty-nine patients (23 male and 16 female; 22-75 years old; mean age, 44.92±12.65 years) suspected of having gliomas underwent 3D 1H MRS examinations. Metabolite ratios [choline (Cho)/creatine (Cr), N-acetylaspartate (NAA)/Cr and Cho/NAA] were measured. Tumor grade was determined by using the histopathologic grading. Receiver operating characteristic analysis of metabolite ratios was performed, and optimum thresholds for tumor grading were determined. The resulting sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for identifying high-grade gliomas were calculated.

Results

Diagnostic-quality 3D 1H MRS with readily quantifiable Cho, Cr and NAA peaks was obtained in 94.87% of the cases. The Cho/Cr and Cho/NAA ratios were significantly higher in high-grade than in low-grade glioma (P<.001), whereas the NAA/Cr ratios were significantly lower in high-grade than in low-grade glioma (P<.001). Receiver operating characteristic analysis demonstrated a threshold value of 2.04 for Cho/Cr ratio to provide sensitivity, specificity, PPV and NPV of 84.00%, 83.33%, 91.30% and 71.43%, respectively. Threshold value of 2.20 for Cho/NAA ratio resulted in sensitivity, specificity, PPV and NPV of 88.00%, 66.67%, 84.62% and 72.73%, respectively. Overall diagnostic accuracy was not statistically significantly different between Cho/Cr and Cho/NAA ratios (χ2=0.093, P=.76).

Conclusion

Metabolite ratios of low-grade gliomas were significantly different from high-grade gliomas. Cho/Cr and Cho/NAA ratios could have the superior diagnostic performance in predicting the glioma grade.  相似文献   

9.
Absolute concentrations of cerebral metabolite in in vivo 1H magnetic resonance spectroscopy studies (1H-MRS) are widely reported in molar units as moles per liter of tissue, or in molal units as moles per kilogram of tissue. Such measurements require external referencing or assumptions as to local water content. To reduce the scan time, avoid assumptions that may be invalid under specific pathologies, and provide a universally accessible referencing procedure, we suggest that metabolite concentrations from 1H-MRS measurements in vivo be reported in molal units as moles per kilogram of tissue water. Using internal water referencing, a two-compartment water model, a simulated brain spectrum for peak identification, and a spectroscopic bi-exponential spin-spin relaxation segmentation technique, we measured the absolute concentrations for the four common 1H brain metabolites: choline (Cho), myo-inositol (mIno), phosphocreatine + creatine (Cr), and N-acetyl-aspartate (NAA), in the hippocampal region (n = 26) and along the Sylvian fissure (n = 61) of 35 healthy adults. A stimulated echo localization method (20 ms echo time, 10 ms mixing time, 4 s repetition time) yielded metabolite concentrations, uncorrected for metabolite relaxation or contributions from macromolecule resonances, that were expectantly higher than with molar literature values. Along the Sylvian fissure the average concentrations (coefficient of variation (CV)) in mmoles/kg of tissue water were 17.6 (12%) for NAA, 14.2 (9%) for Cr, 3.6 (13%) for Cho, and 13.2 (15%) for mIno. Respective values for the hippocampal region were 15.7 (20%), 14.7 (16%), 4.6 (19%), and 17.7 (26%). The concentrations of the two regions were significantly different (p 相似文献   

10.
Brain alcohol was measured in rhesus monkeys (Macaca mulatta) by proton magnetic resonance spectroscopy (MRS) following acute nasogastric alcohol administration (0.8 g/kg). Monkeys were anesthetized with ketamine and xylazine. A 1.5 T whole body imager and a 3-inch surface coil were used to acquire TE 30 and 270 ms spectra from a 7.5 cc voxel localized with a stimulated echo (STEAM) sequence. Venous blood samples were collected during spectral acquisitions for gas chromatographic determination of temporally concordant blood alcohol levels (BALs). Acute alcohol administration did not alter the resonance areas of N-acetylaspartate/N-acetyl containing compounds (NAA), choline containing compounds, or total creatine. The NAA resonance was used as an internal standard to calculate approximate brain alcohol concentrations, which averaged 27 ± 3% and 27 ± 8% of temporally concordant BALs (T2-corrected TE 30 and TE 270 ms spectra, respectively). In addition to reconfirming results from prior studies finding incomplete detection of brain alcohol with MRS, these results demonstrate the feasibility of measuring brain alcohol in anesthetized nonhuman primates to examine relationships between alcohol exposure history and MRS-visibility of brain alcohol.  相似文献   

11.
Localized cerebral in vivo 1H NMR spectroscopy (MRS) was performed in the anesthetized as well as the awake monkey using a novel vertical 7 T/60 cm MR system. The increased sensitivity and spectral dispersion gained at high field enabled the quantification of up to 16 metabolites in 0.1- to 1-ml volumes. Quantification was accomplished by using simulations of 18 metabolite spectra and a macromolecule (MM) background spectrum consisting of 12 components. Major cerebral metabolites (concentrations >3 mM) such as glutamate (Glu), N-acetylaspartate (NAA), creatine (Cr)/phosphocreatine (PCr) and myo-inositol (Ins) were identified with an error below 3%; most other metabolites were quantified with errors in the order of 10%. Metabolite ratios were 1.39:1 for total NAA, 1.38:1 for glutamate (Glu)/glutamine (Gln) and 0.09:1 for cholines (Cho) relative to total Cr. Taurine (Tau) was detectable at concentrations lower than 1 mM, while lactate (Lac) remained below the detection limit. The spectral dispersion was sufficient to separate metabolites of similar spectral patterns, such as Gln and Glu, N-acetylaspartylglutamate (NAAG) and NAA, and PCr–Cr. MRS in the awake monkey required the development and refinement of acquisition and correction strategies to minimize magnetic susceptibility artifacts induced by respiration and movement of the mouth or body. Periods with major motion artifacts were rejected, while a frequency/phase correction was performed on the remaining single spectra before averaging. In resting periods, both spectral amplitude and line width, that is, the voxel shim, were unaffected permitting reliable measurements. The corrected spectra obtained from the awake monkey afforded the reliable detection of 6–10 cerebral metabolites of 1-ml volumes.  相似文献   

12.
External radiation therapy of brain tumors may cause adverse effects on normal brain tissue, resulting in severe neuropsychological and cognitive impairment. We investigated the late delayed radiation effects in the white matter (WM) using (1)H magnetic resonance spectroscopic imaging ((1)HMRSI). Nine glioma patients with local radiation-induced signal abnormalities in the T(2)-weighted MR images were studied with nine age- and sex-matched controls. The metabolite ratios in the radiation-induced hyper intensity area (RIHA) and in the normal appearing white matter (NAWM) of the patients were compared with respective WM areas of the controls. In RIHA, choline/creatine (Cho/Cr) was 17% decreased (1.22 +/- 0.13 vs 1.47 +/- 0.16, p = 0.0027, significant (s), unpaired Student's t test with Bonferroni correction) in the patients compared to the controls, while there was no difference in N-acetyl aspartate/Cr (NAA/Cr) (2.49 +/- 0.57 vs 2.98 +/- 0.32, p = 0.039) or NAA/Cho (2. 03 +/- 0.40 vs 2.04 +/- 0.17, p = 0.95). In NAWM, Cho/Cr was 24% decreased (1.21 +/- 0.15 vs 1.59 +/- 0.13, p < 0.0001, s) and NAA/Cho was 20% increased (2.49 +/- 0.49 vs 1.98 +/- 0.15, p = 0. 0082, s) in the patients compared to the controls, while there was no difference in NAA/Cr (2.99 +/- 0.46 vs 3.16 +/- 0.32, p = 0.38). NAA(RIHA)/NAA(NAWM) was 25% decreased (0.75 +/- 0.20 vs 1.00 +/- 0. 12, p = 0.0043, s) and Cr(RIHA)/Cr(NAWM) was 16% decreased (0.89 +/- 0.15 vs 1.06 +/- 0.10, p = 0.013, s) in the patients compared to the controls, while there was no difference in Cho(RIHA)/Cho(NAWM) (0.92 +/- 0.23 vs 0.98 +/- 0.10, p = 0.47). (1)HMRSI reveals widespread chemical changes in the WM after radiation therapy. In RIHA, there is loss of NAA, Cho, and Cr implying axonal and membrane damage and in NAWM, there is loss of Cho, reflecting membrane damage.  相似文献   

13.
To determine whether differences exist between neurofibromatosis type 1 (NF1) patients with or without focal lesions and healthy normal volunteers in the metabolite ratios of normal appearing white matter, 27 patients with NF1 (with parenchymal lesion, MR positive, n: 17; without parenchymal lesions, MR negative, n: 10) and 20 healthy volunteers underwent MRI and short TE (31 ms) proton MR spectroscopy (MRS). In 17 patients with parenchymal lesions, 61 focal lesions were detected by MRI. MRS was performed from normal appearing frontal and posterior parietal white matter (FWM and PWM) in NF1 and from control groups. NAA/Cr, Cho/Cr and MI/Cr ratios were calculated. Significant increase in Cho/Cr and MI/Cr ratios were found in FWM and PWM in MR negative and positive groups when compared to control group. NAA/Cr ratio in MR positive group was significantly decreased in FWM compared to control group. There were no significant differences between FWM and PWM in all metabolite ratios of MR negative group. MI/Cr ratio in MR positive group was significantly elevated in PWM compared to FWM. Metabolite changes detected by MRS could indicate demyelination and gliosis in normal appearing white matter in all NF1 patients, and additionally neuroaxonal damage in the FWM of NF1 patients with focal lesions. For that reason, in the clinical evaluation and follow-up of these patients MRS features of normal appearing white matter should be considered in addition to focal lesions.  相似文献   

14.
We aimed to investigate the changes in proton metabolite levels at the motor and somatosensory cortex by magnetic resonance spectroscopy (MRS) after upper extremity replantation or revascularization. Nine patients who referred to our clinic suffering from major total (two) and subtotal (seven) amputation of the upper extremity were enrolled in this study. Mean time value between the injury and operation was 5.1 h. Mean follow-up period or mean time between the injury and MRS analysis was 26.2 months (ranging from 7 to 41 months). Voxels (TR: 2000; TE: 136 ms) were placed onto locations in the bilateral precentral and postcentral cortex area of the cerebral hemispheres that represent the upper extremity. Contralateral sides of the brain hemisphere that represent the injured extremity were accounted as control groups. Metabolite ratios [NAA (N-acetyl aspartate)/Cr (creatine) and Cho (choline)/Cr] of the motor and somatosensory cortex were calculated. The NAA/Cr and Cho/Cr metabolite ratios between the two groups were found to be insignificant, and these results may indicate that there is no remarkable somatosensorial cortex disruption or demyelination in these patients. Fifty-six percent of patients were found as functional according to Chen's scale.  相似文献   

15.
1H magnetic resonance spectroscopy (MRS) provides a unique tool to detect and quantify brain metabolites. In multiple sclerosis it can be used to investigate axonal loss or dysfunction through measurement of N-acetyl aspartate (NAA), a neuronal marker. Previous studies in adults have reported variable effects of aging on metabolite concentrations but have predominantly focused on changes in the elderly. This study has examined a younger adult age group to provide a reference database more applicable to the multiple sclerosis population. Single voxel (1)H MRS was carried out in 44 subjects between 22 and 62 years of age. Sixteen subjects underwent repeat examination after one year. Absolute concentrations of NA (the sum of NAA and N-acetyl aspartate glutamate), NAA, creatine/phosphocreatine (Cr), choline containing compounds (Cho) and myo-inositol (mI) were measured. NA, NAA and mI concentrations did not correlate with age but there were significant correlations between age and Cr (r = 0.43, p = 0.004) and Cho (r = 0.38, p = 0. 011) concentrations. No significant differences in metabolite concentrations were seen over one year. This study provides evidence that age-related changes of metabolite concentrations occur even in a young to middle aged adult population. This emphasizes the need to perform absolute quantification of metabolite concentrations rather than ratios and the importance of age-matching in (1)H MRS studies of multiple sclerosis.  相似文献   

16.
Magnetic resonance (MR) technology offers noninvasive methods for in vivo assessment of neuroabnormalities. A comprehensive neuropsychological/behavioral, MR imaging (MRI), MR spectroscopy (MRS) and functional MRI (fMRI) assessment was administered to children with fetal alcohol spectrum disorders (FASD) to determine whether global and/or focal abnormalities could be identified and to distinguish diagnostic subclassifications across the spectrum. The four study groups included (1) FAS/partial FAS; (2) static encephalopathy/alcohol exposed (SE/AE); (3) neurobehavioral disorder/alcohol exposed (ND/AE) as diagnosed with the FASD 4-Digit Code; and (4) healthy peers with no prenatal alcohol exposure. Results are presented in four separate reports: MRS (reported here) and neuropsychological/behavioral, MRI and fMRI outcomes (reported separately). MRS was used to compare neurometabolite concentrations [choline (Cho), n-acetyl-aspartate (NAA) and creatine (Cre)] in a white matter region and a hippocampal region between the four study groups. Choline concentration in the frontal/parietal white matter region, lateral to the midsection of the corpus callosum, was significantly lower in FAS/PFAS relative to all other study groups. Choline decreased significantly with decreasing frontal white matter volume and corpus callosum length. These outcomes suggest low choline concentrations may reflect white matter deficits among FAS/PFAS. Choline also decreased significantly with increasing severity of the 4-Digit FAS facial phenotype, increasing impairment in psychological performance and increasing alcohol exposure. NAA and Cre concentrations did not vary significantly. This study provides further evidence of the vulnerability of the cholinergic system in FASD.  相似文献   

17.
Due to the homology between retinal and cerebral microvasculatures, retinopathy is a putative indicator of cerebrovascular dysfunction. This study aimed to detect metabolite changes of brain tissue in type 2 diabetes mellitus (T2DM) patients with diabetic retinopathy (DR) using proton magnetic resonance spectroscopy (1H-MRS). Twenty-nine T2DM patients with DR (DR group), thirty T2DM patients without DR (DM group) and thirty normal controls (NC group) were involved in this study. Single-voxel 1H-MRS (TR: 2000 ms, TE: 30 ms) was performed at 3.0 T MRI/MRS imager in cerebral left frontal white matter, left lenticular nucleus, and left optic radiation. Our data showed that NAA/Cr ratios of the DR group were significantly lower than those of the DM group in the frontal white matter and optic radiation. In the lenticular nucleus, MI/Cr ratios were significantly higher in the DM group than those in the NC group, while MI/Cr ratios were significantly lower in the DR group than those in the DM group. In the frontal white matter, NAA/Cho ratios were found to be decreased in the DR group as compared to the NC group. Additionally, our finding indicated that NAA/Cr ratios were negatively associated with DR severity in both the frontal white matter and optic radiation. A decrease in NAA indicated neuronal loss and the likely explanation for a decrease in MI was glial loss. In conclusion, we inferred that cerebral neurons and glia cells were damaged in patients with DR. Our data support that DR is associated with brain tissue damage.  相似文献   

18.
Long echo time (TE=270 ms) in vivo proton NMR spectra resembling human brain metabolite patterns were simulated for lineshape fitting (LF) and quantitative artificial neural network (ANN) analyses. A set of experimental in vivo 1H NMR spectra were first analyzed by the LF method to match the signal-to-noise ratios and linewidths of simulated spectra to those in the experimental data. The performance of constructed ANNs was compared for the peak area determinations of choline-containing compounds (Cho), total creatine (Cr), and N-acetyl aspartate (NAA) signals using both manually phase-corrected and magnitude spectra as inputs. The peak area data from ANN and LF analyses for simulated spectra yielded high correlation coefficients demonstrating that the peak areas quantified with ANN gave similar results as LF analysis. Thus, a fully automated ANN method based on magnitude spectra has demonstrated potential for quantification of in vivo metabolites from long echo time spectroscopic imaging.  相似文献   

19.
该文主要研究抑郁大鼠脑的1H MRS变化及颐脑解郁方的干预作用. 将雄性Wistar大鼠随机分为正常组、模型组、西药组和中药组,每组5只. 正常组常规饲养,模型组、中药组和西药组给予21 d的慢性不可预知的温和应激. 应激结束中药组予颐脑解郁方、西药组予盐酸氟西汀进行干预. 干预结束后,通过检测左侧海马及前额叶皮质N-乙酰天门冬氨酸(NAA)、胆碱(Cho)、肌酸(Cr)等代谢物水平,分别计算NAA、Cho与Cr的比值,进而对脑组织代谢进行定性及定量分析. 得到:1. 海马区域:与正常组相比,模型组、西药组大鼠海马NAA/Cr降低(P<0.01),中药组大鼠NAA/Cr与模型组相比升高(P<0.05);与正常组相比,模型组Cho/Cr升高(P<0.05),中药组Cho/Cr比模型组显著低(P<0.01). 2. 前皮质区域:与正常组相比,模型组、西药组大鼠前皮质NAA/Cr降低(P<0.01),中药组大鼠NAA/Cr较模型组显著升高(P<0.01);模型组、西药组Cho/Cr与正常组相比显著升高(P<0.01);与模型组相比,中药组、西药组Cho/Cr降低(P<0.01,P<0.05). 这些结果说明颐脑解郁方可改善大鼠海马和前皮质的物质代谢,推测其抗抑郁作用主要与调节脑组织异常代谢有关.  相似文献   

20.
In localized brain proton MR spectroscopy ((1)H-MRS), metabolites' levels are often expressed as ratios, rather than as absolute concentrations. Frequently, their denominator is the creatine [Cr], which level is explicitly assumed to be stable in normal as well as in many pathologic states. The rationale is that ratios self-correct for imager and localization method differences, gain instabilities, regional susceptibility variations and partial volume effects. The implicit assumption is that these benefits are worth their cost(w)-(w) propagation of the individual variation of each of the ratio's components. To test this hypothesis, absolute levels of N-acetylaspartate [NAA], choline [Cho] and [Cr] were quantified in various regions of the brains of 8 volunteers, using 3-dimensional (3D) (1)H-MRS at 1.5 T. The results show that in over 50% of approximately 2000 voxels examined, [NAA]/[Cr] and [Cho]/[Cr] exhibited higher coefficients of variations (CV) than [NAA] and [Cho] individually. Furthermore, in approximately 33% of these voxels, the ratios' CVs exceeded even the combined constituents' CVs. Consequently, basing metabolite quantification on ratios and assuming stable [Cr] introduces more variability into (1)H-MRS than it prevents. Therefore, its cost exceeds the benefit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号