首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stability of gold nanoparticles synthesised by sputter deposition has been studied in situ in 1-butyl-3-methylimidazolium ionic liquids with bis(trifluoromethylsulfonyl)imide, tetrafluoroborate, hexafluorophosphate and dicyanamide anions with UV-VIS absorption spectroscopy and transmission electron microscopy. Besides the growth of the gold nanoparticles, two other processes were observed after sputtering, namely aggregation and sedimentation of these nanoparticles. To model the absorption spectra of the sputtered gold nanoparticles, generalized multiparticle Mie calculations were performed. These theoretical calculations confirm the increase in absorbance at longer wavelength for larger aggregates and are in agreement with the experimental observations. It was found that the kinetics of aggregation and sedimentation scale with the viscosity of the ionic liquid. Small amounts of water were found to have a large detrimental influence on the stability of the colloidal suspensions of the gold nanoparticles in ionic liquids. From the large discrepancy between the theoretical and the experimentally observed stability of the NPs, it was concluded that structural forces stabilize the gold nanoparticles. This was also borne out by AFM measurements.  相似文献   

2.
One-phase synthesis of gold and platinum nanoparticles using new thiol-functionalized ionic liquids (TFILs) is described for the first time. TFILs as stabilizing agents for gold and platinum nanoparticles were designed to have thiol groups on either the cation or anion and symmetrical or unsymmetrical positions only in the cation. Transmission electron microscopy, electron diffraction, and NMR were used for the characterization of nanoparticles. The metal nanoparticles formed using TFILs are crystalline structures with face-centered cubic packing arrangements and have small sizes (the average diameters are 3.5, 3.1, and 2.0 nm for Au and 3.2, 2.2, and 2.0 nm for Pt, respectively) and uniform distributions (the standard deviations are 0.7, 0.5, and 0.1 nm for Au and 1.1, 0.2, and 0.1 for Pt, respectively). It is believed that the nanoparticle size and distribution depend on the number and position of thiol groups in the IL.  相似文献   

3.
A microfluidic device was used in tandem with an imidazolium-based ionic liquid to fabricate monodisperse gold nanoparticles (4.38 ± 0.53 nm) with excellent control over size and morphology.  相似文献   

4.
The relevance of anion structure on the shape regulating effect of 3-ethyl-1-methylimidazolium-based ionic liquids during the seed-induced growth of gold nanocrystals is evaluated for the particular case of lactate, acetate, methylsulfate, ethylsulfate and tosylsulfonate anion systems. Carboxylate-based anions (lactate and acetate) are found to inhibit the reduction of the gold precursor salt presumably due to the deprotonation of the reducing agent ascorbic acid. The formation of non-uniform, 'head-tail'-type anisotropic particle structures is observed in both methyl- and ethylsulfate anion systems whereas rapid precipitation is observed in the case of tosylsulfonate anions. The particular efficiency of the ethylsulfate solvent system in promoting shape anisotropic growth is interpreted to be a consequence of both reduced anion/cation interactions that act to support the coordination of imidazolium to the metal surface and the enhanced capacity of anions to participate in the particle stabilization process.  相似文献   

5.
6.
Stable Pd(0) and Rh(0) nanoparticles with small and narrow size distribution can be prepared from relative large and agglomerated transition-metal particles dispersed in 1-n-butyl-3methylimidazolium hexafluorophosphate ionic liquid by simple laser irradiation. The laser irradiation is a complementary method for the generation of stable metal colloids in ionic liquids and also for the regeneration of small-size nanoparticles that may result from their agglomeration after different applications.  相似文献   

7.
Metal nanoparticles (MNPs) with a small diameter and narrow size distribution can be prepared by H(2) reduction of metal compounds or decomposition of organometallic species dissolved in ionic liquids (ILs). MNPs dispersed in ILs are catalysts for reactions under multiphase conditions. These soluble MNPs possess a pronounced surfacelike rather than single-site like catalytic properties. In other cases the MNPs are not stable and tend to aggregate or serve as reservoirs of mononuclear catalytically active species.  相似文献   

8.
Multinuclear ((1)H, (31)P, (19)F and (11)B) diffusion ordered spectroscopy (DOSY) technique has been applied to palladium nanoparticles systems dispersed in ionic liquids (ILs). Even if the nanoparticles themselves cannot be detected through NMR, observation of the solvent (methanol) and the IL ([BMI][PF(6)] or [BMI][NTf(2)]), their diffusion coefficients and their changes in the presence of nanoparticles allow us to draw significant assumptions about the organisation of palladium nanoparticles in the IL. For comparison, the corresponding molecular precursors ([PdCl(2)(cod)] or [Pd(2)(dba)(3)]) have been also studied.  相似文献   

9.
Highly stable dendrimer-encapsulated Pd nanoparticles in ionic liquids were prepared for the first time by using charged PAMAM dendrimers as templates, which could maintain hydrogenation efficiency for up to at least 12 recycles.  相似文献   

10.
A principally new exploit of ionic liquids as an alternative reaction medium in the synthesis of cyano-bridged coordination-polymer nanoparticles is reported. Stable colloid solutions containing nanoparticles of cyano-bridged molecule-based magnets, M)[Fe(CN)6]2/[RMIM][BF4] (M2+=Ni, Cu, Co) and Fe4[Fe(CN)6]3/[RMIM][BF4] (R=1-butyl (BMIM), 1-decyl (DMIM)), were prepared in the corresponding 1-R-3-methylimidazolium tetrafluoroborate [RMIM][BF4], which acts as both a stabilising agent and a solvent. By varying the length of the N-alkyl chain on the imidazolium cation of [RMIM]+ and the temperature, the growing process can be controlled to produce nanoparticles of different sizes. By studying the magnetic properties of frozen colloids it is shown that the relaxation of magnetisation is strongly influenced by interparticle interactions, which leads to the appearance of spin-glass-like dynamics in these systems.  相似文献   

11.
Synthesis of single-crystal gold nanosheets of large size in ionic liquids   总被引:6,自引:0,他引:6  
Large-size single-crystal gold nanosheets have been successfully prepared by microwave heating of HAuCl(4) in ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, without any additional template agent. Transmission electron microscopy (TEM), electron diffraction (ED), scanning electron microscopy (SEM), and X-ray powder diffraction (XRD) were used to characterize the resultant gold nanosheets. It was demonstrated that the ionic liquid could act as template agent for the formation of gold nanosheets. The present synthesis route is very simple and fast. It can be expected that the method can be extended to the fabrication of other metal nanosheets in ionic liquids.  相似文献   

12.
Trimethylsilyl cellulose (TMSC) can be efficiently synthesized with 1,1,1,3,3,3‐hexamethyldisilazane (HMDS) by applying the ionic liquids (ILs) 1‐ethyl‐3‐methylimidazolium acetate, 1‐ethyl‐3‐methylimidazolium chloride, and 1‐butyl‐3‐methylimidazolium chloride as reaction medium, yielding pure biopolymer derivatives with degrees of substitution (DS) up to 2.89. Cosolvents, for example, chloroform, could be used to adjust the viscosity of the system and to achieve the miscibility of the components. During the synthesis of highly functionalized derivatives precipitation of the TMSC occurred, which simplifies the recycling of the IL. The high tendency of TMSC toward the formation of supermolecular structures was exploited for the formation of nanoparticles studying a simple dialysis process. Amazingly, pure cellulose nanoparticles can be obtained by dissolving TMSC in tetrahydrofurane or N,N‐dimethyl acetamide and dialysis against water. FTIR spectroscopy confirmed the complete removal of the TMS functions during this process. Scanning electron microscopy, dynamic light scattering, atomic force microscopy, and particle size distribution analysis showed that cellulose particles down to a size of 170 nm are accessible in this simple manner. The nanoparticle suspensions exhibit viscosities in the range of water. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4070–4080, 2008  相似文献   

13.
Gold nanoparticles were electrodeposited directly for the first time from a new electrolyte system: water-in-ionic liquid (W/IL) microemulsion. The electrochemical behavior of Au(Ш) in W/IL microemulsion was investigated. The cyclic voltammetry (CV) result of Au(Ш) shows a pair of redox peak. The effect of precursor apparent concentration on the reduction peak current density is similar to that in homogeneous solution such as aqueous solution. The effect of scan rate on the reduction peak current density is different from that in homogeneous solution. Linear-sweep voltammograms result for a rotating disk electrode in the W/IL microemulsion suggests that the reduction is kinetically limited and not transport limited. And also the activation energy of the reaction was calculated to be 26.7 KJ mol?1. The gold electrodeposits were characterized by scanning electron microscopy and X-ray diffraction. It is found that the gold electrodeposits are face-centered cubic and nanosized. Furthermore, the potential mechanism for the electrode reaction was proposed. In addition, the electrochemical properties of the gold nanoparticles were researched through the electro-oxidation of glycerol. The CV and electrochemical impedance spectroscopy studies demonstrate that the gold nanoparticles electrodeposited from W/IL microemulsion have much higher electro-catalytic activities than bare gold for glycerol oxidation.  相似文献   

14.
Metallic and bimetallic PdAu nanoparticles were solubilized in 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid (IL) by a phase-transfer method using poly(vinylpyrrolidone) (PVP) as a stabilizer. Nanoparticles were characterized by UV–vis spectroscopy and transmission electron microscopy. The bimetallic PdAu nanoparticles in the IL-phase were examined as catalysts for hydrogenation reactions; both the activity and selectivity of the hydrogenation reactions could be tuned by varying the composition of the bimetallic nanoparticles, with maximum activities seen at 1:3 Au:Pd ratios. These nanoparticles/IL catalysts were recycled and then reused for further catalytic reactions with minimal loss in activity.  相似文献   

15.
Gold nanoparticles of 20-100 nm diameter were synthesized within HEK-293 (human embryonic kidney), HeLa (human cervical cancer), SiHa (human cervical cancer), and SKNSH (human neuroblastoma) cells. Incubation of 1 mM tetrachloroaurate solution, prepared in phosphate buffered saline (PBS), pH 7.4, with human cells grown to approximately 80% confluency yielded systematic growth of nanoparticles over a period of 96 h. The cells, stained due to nanoparticle growth, were adherent to the bottom of the wells of the tissue culture plates, with their morphology preserved, indicating that the cell membrane was intact. Transmission electron microscopy of ultrathin sections showed the presence of nanoparticles within the cytoplasm and in the nucleus, the latter being much smaller in dimension. Scanning near field microscopic images confirmed the growth of large particles within the cytoplasm. Normal cells gave UV-visible signatures of higher intensity than the cancer cells. Differences in the cellular metabolism of cancer and noncancer cells were manifested, presumably in their ability to carry out the reduction process.  相似文献   

16.
Journal of Solid State Electrochemistry - The electrocatalytic activity of synthesized quasi-spherical Pt nanoparticles (NPs) has been studied, taking as a model the COads electrooxidation reaction...  相似文献   

17.
The diameter and size-distribution of Ni nanoparticles prepared by the decomposition of [bis(1,5-cyclooctadiene)nickel(0)] organometallic precursor dissolved in 1-alkyl-3-methylimidazolium N-bis(trifluoromethanesulfonyl) amide ionic liquids depend on the length of the alkyl side-chain of the imidazolium ring. The increase of the organization range order of the ionic liquid that increases with that of the alkyl side-chain (from n-butyl to n-hexadecyl) induces the formation of nanoparticles with a smaller diameter and size-distribution. The cubic fcc Ni nanoparticles with 4.9 +/- 0.9 to 5.9 +/- 1.4 nm in mean diameter and monomodal size-distribution thus prepared are probably composed of a small cap layer of NiO around a core of Ni metal. The contribution of the oxide layer also depends on the medium i.e. the metal oxide ratio increases in salts containing four to eight carbons on their side-chains and then decreases as the number of carbons increases. The Ni nanoparticles dispersed in the ionic liquids are active catalysts for the hydrogenation of olefins under relatively mild reaction conditions.  相似文献   

18.
The controlled decomposition of Pt2(dba)3 (dba = dibenzylideneacetone) dispersed in 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMI.BF4) and hexafluorophosphate (BMI.PF6) ionic liquids in the presence of cyclohexene by molecular hydrogen produces Pt0 nanoparticles. The formation of these nanoparticles follows the two-step [A --> B, A + B --> 2B (k1, k2)] autocatalytic mechanism. The catalytic activity in the hydrogenation of cyclohexene is influenced by the nature of the anion rather than the mean-diameter of the nanoparticles. Thus, higher catalytic activity was obtained with Pt0 dispersed in BMI.BF4 containing the less coordinating anion although these nanoparticles possess a larger mean diameter (3.4 nm) than those obtained in BMI.PF6 (2.3 nm). Similar mean diameter values were estimated from in situ XRD and SAXS. XPS analyses clearly show the interactions of the ionic liquid with the metal surface demonstrating the formation of an ionic liquid protective layer surrounding the platinum nanoparticles. SAXS analysis indicated the formation of a semi-organized ionic liquid layer surrounding the metal particles with an extended molecular length of around 2.8 nm in BMI.BF4 and 3.3 nm in BMI.PF6.  相似文献   

19.
The colloidal stability of bare and poly(methyl methacrylate) (PMMA)-grafted silica nanoparticles was studied in 1-alkyl-3-methylimidazolium ([C(n)mim])-based ionic liquids (ILs) with different anionic structures. The theoretical estimation of the colloidal interaction between monodispersed bare silica particles by using the Derjaguin-Landau-Verwey-Overbeek theory indicates that bare silica particles cannot be stabilized and they rapidly form aggregates in all the ILs used in this study. The instability of bare silica particles was experimentally confirmed by dynamic light scattering measurement and in situ transmission electron microscopy observations by utilizing the negligible vapor pressure of ILs. This evidence suggests that electrostatic stabilization is inefficient in ILs because of the high ionic atmosphere and the resulting surface-charge screening. The PMMA-grafted silica particles exhibited long-term colloidal stability in [C(4)mim][PF(6)] and [C(n)mim][NTf(2)], which are compatible with the grafted PMMA. On the other hand, the PMMA-grafted particles could not be stabilized in [C 4mim][BF 4] due to the poor solubility of the grafted PMMA in the IL. Effective steric stabilization is important for obtaining stable colloidal particles in ILs.  相似文献   

20.
The reduction of [Ir(cod)Cl](2) (cod=1,5-cyclooctadiene) dissolved in 1-n-butyl-3-methyl tetrafluoroborate, hexafluorophosphate and trifluoromethane sulphonate ionic liquids in the presence of 1-decene by molecular hydrogen produces Ir(0) nanoparticles. The formation of these nanoparticles follows the two-step [A-->B, A+B-->2B (k(1),k(2))] autocatalytic mechanism. The same mean diameter values of around 2-3 nm were estimated from in situ TEM and SAXS analyses of the Ir(0) nanoparticles dispersed in the ionic liquids and by XRD of the isolated material. XPS and EXAFS analyses clearly show the interactions of the ionic liquid with the metal surface demonstrating the formation of an ionic liquid protective layer surrounding the iridium nanoparticles. SAXS analysis indicated the formation of an ionic liquid layer surrounding the metal particles with an extended molecular length of around 2.8-4.0 nm depending on the type of the anion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号