首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A diode-pumped acousto-optically Q-switched intracavity frequency-doubled Nd:GdVO4/KTP green laser formed with a flat–flat resonator was demonstrated. 3.05 W of average green output power at pulse repetition frequency (PRF) of 40 kHz was obtained with an optical conversion efficiency of 18.4%, the effective intracavity frequency-doubling efficiency was 57%. At the incident pump power of 15 W, the shortest laser pulse occurred at PRF of 25 kHz with FWHM width of 14 ns, yielding the highest peak power of 7.44 kW; while the largest pulse energy of 0.14 mJ was achieved at PRF of 15 kHz.  相似文献   

2.
By simultaneously using both active and passive Q-switches in the same cavity, a diode-pumped doubly Q-switched intracavity-frequency-doubled c-cut Nd:GdVO4/KTP green laser with acoustic-optic (AO) modulator and GaAs semiconductor saturable absorber is realized. A comparison between c-cut and a-cut Nd:GdVO4 crystals shows that the doubly Q-switched c-cut Nd:GdVO4/KTP green laser can generate narrower pulse and higher peak power when the incident pump power is higher than 4.4 W. In addition, the doubly Q-switched c-cut Nd:GdVO4/KTP green laser can generate more symmetric and shorter pulse in comparison with singly AO- or GaAs-Q-switched laser. The coupled rate equations are used to simulate the process of these lasers.  相似文献   

3.
A diode-laser-array end-pumped acousto-optically Q-switched intracavity frequency-doubled Nd:GdVO4/KTP green laser, formed with a three-mirror folded resonator, has been demonstrated. With 15 W of pump power incident upon the Nd:GdVO4 crystal, a maximum average green output power of 3.75 W was obtained at 50 kHz of pulse repetition frequency, giving an optical conversion efficiency of 25%, whereas the effective intracavity frequency-doubling efficiency was determined to be 72%. At the incident pump power of 12.8 W, the shortest laser pulse was achieved at a pulse repetition rate of 10 kHz, the resulting pulse width, single pulse energy, and peak power were measured to be 35 ns, 108 μJ, and 3.1 kW, respectively. Received: 18 May 2000 / Published online: 20 September 2000  相似文献   

4.
A compact diode-pumped passively Q-switched intracavity frequency-doubled Nd:GdVO4/KTP green-pulse laser was demonstrated, using Cr4+:YAG as a saturable absorber in a simple flat–flat cavity. With a 5.9 W incident pump power, a passively Q-switched green laser was obtained with an average power of 397 mW, repetition rate of 40 kHz, and pulse width of 40 ns, when the initial transmission of Cr4+:YAG was 85%. The shortest pulse width of 30 ns, the highest green peak power of 696 W and the maximum pulse energy of 21 μJ were obtained when the initial transmission of Cr4+:YAG was 70%. Under CW green operation, we obtained 440 mW output power.  相似文献   

5.
A laser diode directly end-pumped, passively Q-switched Nd:YVO4/Cr:YAG laser is presented in this paper. With 600 mW incident pump laser, Q-switched 1064 nm laser with an average power of 138 mW, pulse width of 19.8 ns, repetition rate of 170.1 kHz and peak power of 40.96 W is obtained. When a KTP crystal was inserted into the cavity, Q-switched 532 nm laser with an average power of 56 mW, pulse width of 28.4 ns, repetition rate of 118.2 kHz and peak power of 16.7 W is obtained at last.  相似文献   

6.
A diode-end-pumped simultaneously Q-switched and mode-locked intracavity frequency doubled Nd:GdVO4/LBO red laser with an acousto-optic Q-switch was realized. The maximum red laser output power of 250 mW was obtained at the incident pump power of 8.3 W and the repetition rate of 10 kHz. At 5 kHz, the maximum mode-locking modulation depth of about 80% was achieved with the Q-switched pulse width of 440 ns. The red mode-locked pulse inside the Q-switched pulse had a repetition rate of 115 MHz, its average pulse width was estimated to be about 350 ps.  相似文献   

7.
A diode-pumped passively Q-switched mode-locked (QML) intracavity frequency-doubled Nd:GdVO4/KTP green laser with a semiconductor saturable absorber is presented. Nearly 100% modulation depth for the mode-locked green pulses can be achieved at any pump power over 1.92 W. The width of the mode-locked green pulse was estimated to be about 150 ps. The mode-locked pulse interval within the Q-switched envelope of 320 ns and the repetition rate of 97.5 kHz were obtained, at an incident pump power of 4.4 W. The repetition rate of the mode-locked green pulses inside the Q-switched envelope was 140 MHz.  相似文献   

8.
Liu  J.  Ozygus  B.  Erhard  J.  Ding  A.  Weber  H.  Meng  X. 《Optical and Quantum Electronics》2003,35(8):811-824
A diode-pumped 1.34 m Nd:GdVO4 laser operating in cw and active Q-switching modes has been demonstrated. 4.15 W of cw output power was obtained at the highest attainable pump power of 12.3 W, resulting in an optical conversion efficiency of 33.7%, the slope efficiency was determined to be 37.6%. In Q-switching operation, a maximum average output power of 2.7 W was generated at pulse repetition frequency (PRF) of 50 kHz, with an optical conversion efficiency of 22% and a slope efficiency of 29.2%. The laser pulses with shortest duration, highest energy and peak power were achieved at PRF of 10 kHz, the parameters being 15 ns, 160 J, and 10.7 kW, respectively. By intracavity frequency-doubling with a type II phased-matched KTP crystal, 0.62 W average power at 0.67 m was produced at a PRF of 15 kHz, the resulting pulse energy, peak power, and pulse width being 41.3 J, 2.2 kW, and 19 ns, respectively. A group of analytical formulae, based on rate equations, are presented to evaluate the operational parameters of an actively Q-switched laser. Calculated results were found to be in close consistency with the experimental data.  相似文献   

9.
A simple and compact diode-pumped acousto-optically Q-switched intracavity frequency-doubled Nd:LuVO4/KTP green laser were demonstrated successfully for the first time. At an incident pump power of 6.5 W, an average output power of 663 mW, a pulse width of 26 ns were obtained with a PRF of 10 kHz. The pulse energy and peak power of the green light were determined to be 66.3 μJ and 2.55 kW, respectively.  相似文献   

10.
J. Ma  Y. Xu  P. Zhao  D. Liu 《Laser Physics》2010,20(8):1703-1706
Using a V3+:YAG saturable absorber, we realize the running of a laser-diode end-pumped passively Q-switched intracavity-frequency-doubling Nd:GdVO4/KTP red laser. Under the absorbed pump power of 9.45 W and with V3+:YAG initial transmission T 0 = 94%, the obtained average output power and pulse width were 610 mW and 15.09 ns with the repetition rate of 12.2 kHz, corresponding to the single pulse energy 50 μJ and the pulse peak power 3.34 kW.  相似文献   

11.
We have demonstrated an efficient diode-pumped passively Q-switched Nd:GdVO4 laser working at 1342 nm by using an uncoated V3+:YAG crystal as the saturable absorber, in which both a-cut and c-cut Nd:GdVO4 crystals are employed. At the maximum absorbed pump power of 9.45 W, the maximum average output power can reach 519 mW and 441 mW corresponding to the output coupler with different transmission of 3% and 10% by using an a-cut Nd:GdVO4 crystal at 1342 nm, while the shortest pulse duration could be as low as 21.7 ns and 22.3 ns with the repetition rate of 48.41 kHz and 53.25 kHz by using a c-cut Nd:GdVO4 crystal, corresponding to the output coupler with different transmission of 3% and 10% at 1342 nm, and the single Q-switched pulse energy are 6.67 uJ and 7.06 uJ, the pulse peak power are 307 W and 316 W, respectively. The experimental results show that c-cut Nd:GdVO4 laser can generate shorter pulse with higher peak power in comparison with a-cut one.  相似文献   

12.
We report a diode-end-pumped passively Q-switched Nd:GdVO4 laser operating at 1.06 μm with In0.25Ga0.75As being the saturable absorber as well as an output coupler. Q-switched pulses with a pulse duration of 20 ns, pulse energy 4.2 μJ and pulse repetition rate 200 kHz were produced, corresponding to peak power of 210 W.  相似文献   

13.
A diode-pumped passively Q-switched Nd:YAG/SrWO4/KTP yellow laser is presented for the first time. As high as 1.02 W average output power was obtained at a pump power of 14.0 W with a pulse repetition frequency of 21.9 kHz and the corresponding diode-to-yellow conversion efficiency was 7.29%. The highest pulse energy of 56.2 μJ was obtained at a pump power of 7.2 W.  相似文献   

14.
Efficient continuous-wave (cw), passively Q-switched, and actively Q-switched laser operations are demonstrated with a mixed vanadate crystal of Nd:Gd0.18Y0.82VO4 under diode pumping. In a cw operation, an output power of 8.25 W is obtained at a maximum available incident pump power (Pin) of 15 W, with a slope efficiency of 56%. Using a Cr4+:YAG crystal of initial transmission of 62% as the saturable absorber for Q-switching, an average output power of 3.05 W is generated at pulse repetition frequency (PRF) of 16.7 kHz when the laser is pumped with the same maximum Pin. The pulse energy, pulse duration, and peak power are 183.3 μJ, 6.0 ns, and 30.6 kW, respectively. When actively Q-switched by an acousto-optic modulator, the laser produces an average output power of 5.5 W at PRF of 30 kHz with 16.2 W of pump power incident upon the laser crystal. The pulse energy, duration, and peak power are measured to be 183 μJ, 10.5 ns, and 17.5 kW, respectively.  相似文献   

15.
F. Chen  W. W. Wang  J. Liu 《Laser Physics》2010,20(2):454-457
By simple extra-cavity frequency conversion, the performance of a diode single-end-pumped AO Q-switched Nd:GdVO4/KTP/BBO 266 nm laser was demonstrated. Under the incident pump power of 14.32 W, the maximum average output power at 266 nm was 374 mW at the repetition of 20 kHz; the opticaloptical conversion efficiency was 2.6%. The corresponding pulse width was 5 ns, with the single-pulse energy and peak power calculated to be 18.7 μJ and 3.74 kW, respectively. The dependence of the operational parameters on the pump power was also investigated experimentally.  相似文献   

16.
LD泵浦Nd∶YVO4/KTP内腔倍频声光调Q理论和实验研究   总被引:7,自引:0,他引:7  
赵宏明  赵圣之  杨克建  李桂秋 《光子学报》2004,33(11):1294-1297
给出了Nd∶YVO4/KTP内腔倍频声光调Q工作原理的耦合波速率方程组.实现了半导体激光器(LD)抽运折叠腔倍频声光调Q绿激光的运转,在抽运光功率3.8 W、重复频率10 kHz时,获得绿光脉冲宽度为33.2 ns,单脉冲能量为59.6 μJ, 峰值功率达到1.8 kW.数值求解耦合波方程组理论值与实验结果相符.  相似文献   

17.
An efficient diode-pumped passively Q-switched Nd:GdVO4/Cr4+:YAG laser was employed to generate a high-repetition-rate, high-peak-power eye-safe laser beam with an intracavity optical parametric oscillator (OPO) based on a KTP crystal. The conversion efficiency for the average power is 8.3% from pump diode input to OPO signal output and the slope efficiency is up to 10%. At an incident pump power of 14.5 W, the compact intracavity OPO cavity, operating at 46 kHz, produces average powers at 1571 nm up to 1.2 W with a pulse width as short as 700 ps. PACS 42.60.Gd; 42.65.Yj; 42.55.X  相似文献   

18.
A coherent UV passively Q-switched diode pumped Nd:GdVO4 laser source is proposed. During pumping of the β-BBO crystal a stable light with power 0.6 W with wavelength 532 nm and pulse duration 9 ns at frequency repetition 16 kHz was applied. The output UV light has a power about 79 mW at wavelength 266 nm during diode-pumping with 8 W incident light.  相似文献   

19.
A diode-pumped actively Q-switched Nd:GdVO4 green laser with periodically poled KTP (PPKTP) and Acoustic-optic (AO) modulator has been realized. The dependences of pulse energy, pulse width, and peak power on incident pump power are measured. At the pump power of 4.1 W and repetition rate of 10 kHZ, we can obtain a 19.2 ns pulse with pulse energy of 0.11 mJ and peak power of 5.8 kW, which are almost three times of that in the conventional KTP green laser, respectively. A rate equation model is introduced to theoretically analyze the results obtained in the experiment, in which the Gaussian spatial distribution of the intracavity photon density is taken into account. The numerical solutions of the rate equations agree with the experimental results.  相似文献   

20.
We report for the first time the actively Q-switched laser performance of a class of mixed Nd:Gd x Y1−x VO4 crystals. In comparison with the ordered Nd:GdVO4 and Nd:YVO4, an enhancement in both pulse energy and peak power is demonstrated in the low pulse-repetition frequency (PRF) range of 5–20 kHz, confirming Nd:Gd0.64 Y0.36VO4 as the most advantageous in this respect. Laser pulses of 8.3-ns duration are generated at PRF=10 kHz with pulse energy and peak power being respectively 171 μJ and 20.6 kW. While for high-PRF operation (>∼40 kHz), the ordered Nd:GdVO4 and Nd:YVO4 prove to be superior to the mixed crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号