首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
在一台光学发动机上,利用火焰高速成像技术和自发光光谱分析法,研究了燃料敏感性(S)为0和6时对发动机缸内火焰发展和燃烧发光光谱的影响。试验过程中,通过改变喷油时刻(SOI=-25,-15和-5°CA ATDC)使燃烧模式从部分预混燃烧过渡到传统柴油燃烧模式。通过使用正庚烷、异辛烷、乙醇混合燃料来改变燃料敏感性。结果表明,在PPC模式下(-25°CA ATDC),火焰发展过程是从近壁面区域开始着火,而后向燃烧室中心发展,即存在类似火焰传播过程,同时在燃烧室下部未燃区域也形成新的着火自燃点。敏感性对燃烧相位影响较大,对缸内燃烧火焰发展历程影响较小;高敏感性燃料OH和CH带状光谱出现的时刻推迟,表明高敏感性燃料高温反应过程推迟,且光谱强度更低,表明碳烟辐射强度减弱。在PPC到CDC之间的过渡区域(-15°CA ATDC),燃烧火焰发光更亮,燃烧反应速率比-25°CA ATDC时刻的反应速率更快。高、低敏感性燃料对缸压放热率的影响规律与-25°CA ATDC相近,此时的燃烧反应更剧烈,放热率更高,碳烟出现时刻更早。该喷油时刻下的光谱强度高于PPC模式下的光谱强度,说明此时的CO氧化反应与碳烟辐...  相似文献   

2.
正丁醇是一种很有前景的柴油替代燃料,针对缸内火焰发展和燃烧中间产物的自发光光谱开展研究,有助于深入理解柴油掺混正丁醇混合燃料对柴油机燃烧过程的影响规律。因此,在一台光学发动机上,利用火焰高速成像技术和自发光光谱分析法,研究纯柴油与柴油掺混不同比例正丁醇后对发动机缸内火焰发展和自发光光谱的影响。试验过程中,光学发动机转速为1 200 r·min~(-1),喷油压力为600 bar,进气加热到398 K,使上止点附近达到约900 K温度。纯柴油、柴油掺混20%正丁醇燃料和柴油掺混40%正丁醇燃料分别用D100, DB20和DB40表示,三种燃料在每个着火循环喷入的油量分别为17.5, 18.7和19.2 mg,从而保证发动机输出功相同。试验结果表明:冷却水温不变时,喷油时刻推迟,滞燃期缩短,初始火核形成时刻推迟,蓝色预混火焰比例减小;喷油时刻不变时,提高冷却水温度,滞燃期缩短,初始火核形成时刻提前,蓝色预混火焰比例减小。随着正丁醇掺混比例增加,呈现局部混合气率先着火的特征且着火时刻推迟,蓝色预混火焰比例增加,火焰亮度降低,火焰亮度从大到小依次为:D100DB20DB40。D100燃料随喷油推迟,整体光谱的峰值向长波方向移动,碳烟辐射增强, OH谱带的光强峰值先增大后减小, OH和CH_2O谱带出现的时刻推迟,表明高温和低温反应时刻推迟;喷油时刻不变时,提高冷却水温,整体光谱的光强增加, OH和CH_2O谱带的出现时刻提前,表明高温和低温反应时刻提前。掺混正丁醇后的DB40燃料随喷油推迟,光谱的整体光强增加, OH和CH_2O谱带的光强峰值提高,表明推迟喷油对DB40燃料也是有助于促进高温和低温反应。DB40燃料光谱的整体光强低于D100燃料,其OH和CH_2O的谱带出现的时刻迟于D100燃料,表明掺混正丁醇后燃料的高温和低温反应时刻都相对D100燃料推迟。SOI-15、冷却水温95℃工况下, D100燃料的谱线经过2℃A就呈现出了类似碳烟黑体辐射谱的特征,而DB40燃料先呈现出CO氧化连续谱的特征,经过15℃A才呈现碳烟黑体辐射谱的特征。  相似文献   

3.
OH*自由基是火焰中主要的激发态自由基之一,它所产生的化学发光可用于描述火焰的结构、拉伸率、氧燃当量比和热释放速率等特征信息,因此被广泛应用于火焰燃烧状态的在线诊断。以甲烷/氧气层流同轴射流扩散火焰作为研究对象,采用GRI-Mech 3.0机理结合OH*自由基生成和淬灭反应进行数值计算,对OH*自由基的二维分布特性进行研究,分析不同区域内OH*自由基的生成路径,并探讨不同氧燃当量比例和不同喷嘴出口尺寸对OH*自由基强度和分布特性的影响。模拟结果与实验研究基本吻合,表明计算模型能够准确描述火焰中OH*自由基的二维分布。结果表明:在甲烷/氧气层流同轴射流扩散火焰中,OH*自由基存在两种不同形态的分布区域,分别由反应CH+O2=OH*+CO和H+O+M=OH*+M生成;随着氧燃当量比提高,OH*自由基的分布区域逐渐向火焰下游扩张,根据其分布形态的变化可以对火焰燃烧状况进行判断;如果OH*自由基仅分布于火焰的上游区域且呈断开形态,则说明火焰处于贫氧燃烧状态。如果OH*分布呈环状形态,则说明火焰处于富氧燃烧状态;相同氧气流量条件下,缩小喷嘴出口的环隙尺寸有助于加强燃料和氧气的化学反应程度,从而使火焰中OH*自由基的摩尔分数显著提高,增强OH*化学发光的辐射强度,提高火焰光谱诊断的准确性。  相似文献   

4.
二甲醚HCCI燃烧高温反应动力学分析   总被引:1,自引:0,他引:1  
应用单区燃烧模型对二甲醚均质压燃燃烧的化学反应动力学过程进行了数值模拟研究。通过分析在内燃机压燃燃烧边界条件下二甲醚高温氧化反应过程中的关键基元反应速度、关键中间产物以及自由基的浓度随曲轴转角的变化,得到了二甲醚燃烧氧化的高温反应途经。结果表明,二甲醚均质压燃燃烧具有明显的两阶段放热特性,即低温反应放热和高温反应放热。高温反应阶段又可分为蓝焰反应阶段和热焰反应阶段,其中蓝焰反应阶段是甲醛氧化成CO的过程,热焰反应主要是CO氧化成CO2的过程。二甲醚氧化产物之一甲酸(HOCHO)在蓝焰反应阶段分解生成CO2。  相似文献   

5.
采用三组单色仪探测系统,测量了甲基环己烷在高温反射激波作用下瞬态燃烧反应过程中三种激发态自由基OH*,CH*和C*2的特征光辐射,得到了激发态自由基时间历程和光辐射相对强度随温度的变化规律。反射激波温度1 200~1 700 K,激波压力1.5 atm,甲基环己烷摩尔分数0.1%,当量比1.0。在点火燃烧初始阶段三种自由基几乎同时产生,自由基持续时间随着温度的升高而变短。相同温度下CH*和OH*自由基持续时间大于C*2自由基,在1 400 K以下C*2自由基发光消失。OH*和CH*自由基发光强度在T<1 400 K时对温度变化不敏感,而在T>1 400 K时CH*自由基峰值随温度快速增长,C*2和OH*峰值随温度增大比较平缓。将实验结果和化学反应机理模拟结果进行了对比,实验获得的OH*自由基时间历程在低温时和机理预测结果吻合较好,但在高温时有一定差异。CH*自由基时间历程在高温与机理结果吻合较好,在低温时机理预测结果CH*自由基持续时间要长于实验结果。实验测得的结果为含激发态物种化学反应动力学机理的验证和优化提供了依据。  相似文献   

6.
本文报道了过渡金属Mn2+离子的含量对二维纳米发光材料[ZnxMg6-xAl2(OH)16]2+[S*2H2O]2-发光强度的影响,并研究了其他合成条件如Zn2+含量、硫化时间、灼烧温度等对发光材料、发光强度的影响.  相似文献   

7.
本文报道了过渡金属Mn2+离子的含量对二维纳米发光材料[ZnxMg6-xAl2(OH)16]2+[S*2H2O]2-发光强度的影响,并研究了其他合成条件如Zn2+含量、硫化时间、灼烧温度等对发光材料、发光强度的影响.  相似文献   

8.
用开发的气体喷射系统,研究了缸内喷射CO2对两段喷油实现的准均质压燃(HCCI)燃烧排放的影响.结果表明:通过调节CO2的喷射始点和喷射量,可以有效控制NOx排放.随着缸内CO2喷射始点的提前,燃烧相位推迟,NOx排放降低.在缸内喷射始点为-150℃A ATDC时,随着CO2循环喷射量的增大,缸内最高平均温度降低,燃烧相位推迟,最大压力升高率和指示热效率变化不大,而出于滞燃期的增大,放热率峰值反而比原机略高;NOx排放减小,HC和CO排放增大,烟度变化比较小.  相似文献   

9.
基于燃烧化学自发光的诊断技术对发动机诊断、监控有重要意义.针对碳氢燃料燃烧中OH*,CH*激发态物质的生成机理,及其与释热率、当量比的关系进行了实验与模拟探究.首先,利用提出的辐射标定手段对当量比0.7~1.33范围内甲烷-空气预混火焰进行了化学发光量化测量,通过波长分辨的光学收集系统,同时获得各发光组分的浓度,具有很强的便利性.然后采用一维燃烧反应模拟,对与实验工况相同条件下的发光辐射进行定量计算,并对比了释热分布与激发态物质(OH*,CH*,C2*,CO2*)的相互关系,计算结果表明,在甲烷-空气层流火焰中,OH*,CH*最合适标识释热率,C2*次之,CO2*与释热率分布几乎无相关性.通过实验与计算的对比结果,分析了现有OH*,CH*的各反应通道和常数的准确度,并评估了两自发光组分的主要生成反应路径.   相似文献   

10.
进气中CO2浓度对预混合燃烧和排放影响的试验和模拟研究   总被引:4,自引:0,他引:4  
本文研究了进气中CO2浓度对燃烧和排放特性的影响.研究表明在所有的预混合燃料比下,当CO2浓度增加时,NOx排放随之大幅减少,烟度排放有小的变化。利用KIVA3V和湍流与化学反应交互的燃烧模型对柴油机预混合燃烧进行了模拟研究,对缸内OH浓度的模拟计算表明,随着CO2浓度的增加,着火前期OH生成浓度明显向后推移,这表明燃料的氧化速率随CO2浓度的增加变慢,从而延长了着火滞燃期。进气中CO2浓度变大时,燃烧温度降低,有利于降低NOx的排放。  相似文献   

11.
火焰的辐射光谱可为燃烧诊断提供诸多信息,因此目前对简单的气态火焰自由基辐射特性已进行了大量研究,而关于非均相火焰的辐射光谱特性研究则相对较少。采用改进的热氧喷嘴技术在敞开空间下直接点燃水煤浆,并利用光纤光谱仪和紫外成像系统,着重对甲烷和水煤浆火焰的辐射光谱及OH*的二维分布特性进行研究。结果表明:与甲烷火焰的光谱辐射相比,水煤浆火焰不仅存在OH*,CH*和C2*特征辐射,还产生了Na*,Li*,K*和H*的发射谱线,并出现了连续的黑体辐射,这些光谱辐射特征可作为水煤浆气化或燃烧的标志,也可作为水煤浆是否点燃的判据;通入水煤浆后,OH*强度明显下降,而CH*和C2*强度增大。对比甲烷火焰OH*二维分布,水煤浆火焰OH*峰值强度明显下降,化学反应区域面积显著减小;沿着火焰传播方向,甲烷和水煤浆火焰轴向的OH*强度均呈先增大后减小的趋势;甲烷火焰径向的OH*在反应核心区出现了双峰形态分布,而水煤浆火焰OH*径向始终呈单峰分布。随着氧碳当量比增大,水煤浆火焰OH*的存在范围扩大,说明氧气的增加促进了OH*的产生;随水煤浆流量提高,OH*的反应核心区域缩小,峰值强度明显下降,CH*,C2*,Na*,Li*,K*和H*的强度显著增强,连续的黑体辐射强度也明显增大,这些辐射光谱的变化可用于表征操作负荷的变化。  相似文献   

12.
采用有机金属沉积法(MOD)制备了Bi4Ti3O12(BIT)和Bi3.25La0.75Ti3O12(BLT)前驱体溶液,分别在单晶硅基片上制备了BIT和BLT铁电薄膜.前驱体溶液的干凝胶粉体和铁电薄膜分别用红外光谱(FTIR)、拉曼光谱和环境扫描电镜(ESEM)进行了表征.结果表明600℃时晶粒实现了由焦绿石相向类钙钛矿相结构的完全转变;温度升高,晶粒尺寸增大,薄膜结晶效果得到改善;引入镧使Ti-O和Bi-O键吸收峰位置向低波数频移,高温时频移率较大;500℃热处理时,干凝胶中乙二醇甲醚、乙酰丙酮完全分解,温度超过600℃后,残留的水及硝酸根离子挥发或分解.  相似文献   

13.
氢能作为一种高热值、无污染的清洁能源日渐受到国内外专家学者的追捧。微波液相放电技术在醇类中制氢具有光明的研究前景,为氢能的研究开发开辟了一条新的途径。通过对乙醇制氢发射光谱分析,有利于分析微波液相放电醇类制氢机理的探讨,为进一步改进微波液相放电制氢技术奠定基础。本文采用2.45 GHz频率微波在液相醇类中放电实现了微波液相等离子体制氢,并借助发射光谱仪对微波液相放电乙醇制氢光谱特性进行了研究。研究结果显示:微波液相放电乙醇制氢过程中,能产生大量的H,O,OH,CH,C2等活性粒子;乙醇放电光谱中OH自由基、H自由基和O自由基的光谱强度要远大于纯水中OH自由基、H自由基和O自由基的光谱强度;高能粒子打开水分子中的O—H键,脱氢制氢的过程较乙醇分子难度要大,因此在微波乙醇放电制氢过程中,氢气的来源主要是乙醇分子的脱氢重组,水分解产氢的贡献度较低;在外界压力与温度一定的条件下,OH,H,O自由基的发射光谱强度随着功率的增加显著增强,而CH和C2活性粒子发射光谱强度则出现减弱趋势,这表明较大的微波功率不仅使产生的高能粒子的能量增加,同时高能粒子的密度也有所增加,导致较多的CH和C2基团被充分碰撞打开。  相似文献   

14.
对未燃烧的可燃混合气体进行DBD放电,放电后会产生大量的活性粒子,这些活性粒子可以辅助气体燃烧,达到提高燃料燃烧利用率等目的。以DBD激励氩气、甲烷、空气产生的自由基(CH基和OH基)等强化燃烧的关键活性粒子为探索对象,研究DBD放电激励甲烷对滑动弧火焰的影响。为此,采用自主设计的DBD-滑动弧双模式等离子体激励器,利用同轴介质阻挡放电结构对氩气、甲烷、空气混合气进行放电激励,将激励后的氩气、甲烷、空气混合气通入滑动弧端进行点火。固定氩气流量不变,调整空气流量为4.76 L·min-1,并加入甲烷0.5 L·min-1,保证进气通道内氩气与空气-甲烷的气体体积流量比达到Ar∶(CH4+Air)=1∶30,其中空气、甲烷这两种气体达到了化学燃烧当量比φ=1,氩气、甲烷、甲烷混合气体能实现均匀而稳定的放电并燃烧。DBD段放电电压在15~20 kV范围变化,放电频率在6~10 kHz范围变化,滑动弧段的电压和频率分别保持4 kV与10 kHz恒定,通过改变DBD段放电电压和放电频率,用高速光纤光谱仪检测滑动弧火焰中自由基种类及其光谱强度,分析放电参数激励甲烷对火焰中自由基(CH基和OH基)的影响。结果表明,DBD段放电电压及放电频率的增加可以促进火焰内部的偶联反应发生,可有效提升甲烷滑动弧火焰内部的活性粒子含量,其中OH基团、CH基团在燃烧链式化学反应进程中发挥着较为重要的作用。甲烷经过DBD激励后,随放电电压和频率的增加,火焰中OH基、CH基等主要活性粒子都随之增加。DBD放电后,活性粒子的光谱强度增大,特征谱线比单模式更加明显;甲烷经过DBD激励后,火焰组成发生了变化,滑动弧段出口处甲烷燃烧反应更加充分,火焰温度越高越容易产生OH基。与单模式滑动弧相比,双模式放电可有效促进火焰内部的链式化学反应进程,促进燃料燃烧。  相似文献   

15.
本文采用实验测量和数值模拟结合的方法,对AC放电下He/CH4/O2混合气中激发态对甲烷裂解和低温氧化的动力学贡献进行研究。基于HP-Mech,增加反应物的放电机理以及激发态参与的化学反应及其驰豫反应,建立CH4低温氧化机理。采用化学反应动力学求解器CHEMKIN中的两段式Plasma-PSR模型模拟放电过程及化学反应过程。该动力学模型能较好地预测反应物的消耗和主要产物的生成,反应路径分析表明激发态物质CH4(v),O2(v),O2(a^1△g)等通过链式反应CH4(v)+OH→CH3+H2O,O2(v)+H→OH+O,O2(a^1△g)+H→OH+O促进活性自由基和产物的生成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号