首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four different magnesium oxides were studied in the wet oxidation of H2S to sulfur. The H2S removal capacity of MgO in the catalytic wet oxidation strongly depends on the pore size distribution. The MgO with relatively large pores (>100 ?) showed a high removal capacity of H2S. It is suggested that the large pore size favors H2S removal in the catalytic wet oxidation due to the limitation of diffusion. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
A novel, efficient and reusable heterogeneous catalytic assembly of peroxophosphotungstate held in an ionic liquid brush was synthesized and an extraction and catalytic oxidative desulfurization (ECODS) procedure was developed for a model oil of benzothiophene (BT) and dibenzothiophene (DBT) using 30 wt% hydrogen peroxide as terminal oxidant and methanol as solvent under mild conditions. Several factors that affect sulfur removal were investigated in detail. The highest sulfur removal can reach 100% for BT in 7 h at 70 °C when the molar ratio of H2O2, S and catalyst is 10:1:0.025. The sulfur removal for DBT can also reach 100% in 4 h at 50 °C with the same molar ratio of H2O2, S and catalyst. The experimental results demonstrate that this ECODS process has no apparent scale‐up effect. The catalyst can be easily recovered (via simple filtration) and recycled five times without a significant decrease in activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The room temperature wet catalytic oxidation was conducted in a batch reactor with V/MgO catalyst. The XRD study of the catalyst used indicated that V/MgO could not only oxidize H2S to sulfur selectively, but also prevent the sulfidation of metal oxide effectively at the room temperature. The XPS study indicated that the H2S oxidation with V/MgO could proceed by a redox mechanism (V5+↔ V4+) and that V3+ formation (V4+→ V3+), was responsible for the deactivation of V/MgO. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Two hexacyanoferrate‐based ionic liquids, [C4Py]3Fe(CN)6 and [C16Py]3Fe(CN)6, were synthesized and characterized using Fourier transform infrared and mass spectroscopies and CHN analysis. They were employed as Fenton‐like catalysts in extraction and catalytic oxidative desulfurization of model oil with dibenzothiophene (DBT), benzothiophene (BT), 4,6‐dimethyldibenzothiophene (4,6‐DMDBT), 4‐methyldibenzothiophene (4‐MDBT) and 3‐methylbenzothiophene (3‐MBT) as substrates. Various polar solvents, such as ionic liquids, water and organic solvents, were applied to choose a suitable extractant. The results showed the removal of DBT reached 97.1% with [C4Py]3Fe(CN)6 as a catalyst and 1‐n‐octyl‐3‐methylimidazolium hexafluorophosphate ([C8mim]PF6) as an extractant under optimal conditions. The activity of sulfur removal followed the order DBT > 3‐MBT > BT > 4‐MDBT >4,6‐DMDBT. The effect of water content on sulfur removal was investigated by adding various concentrations of H2O2. It was found that excess water had a positive effect on sulfur removal but the catalysts were less sensitive than [FeCl4?]‐based catalysts to water. The mechanism was studied using electron spin‐resonance spectroscopy and gas chromatography–mass spectrometry. O2?? may be the active oxygen species in the catalytic oxidative desulfurization process and the oxidation products of various sulfur compounds were the corresponding sulfoxides and sulfones. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The effect of calcination temperature on the state of the active component of iron-containing catalysts prepared by the impregnation of silica gel with a solution of FeSO4 and on their catalytic properties in selective H2S oxidation to sulfur was studied. With the use of thermal analysis, XPS, and Mössbauer spectroscopy, it was found that an X-ray amorphous iron-containing compound of complex composition was formed on the catalyst surface after thermal treatment in the temperature range of 400–500°C. This compound contained Fe3+ cations in three nonequivalent positions characteristic of various oxy and hydroxy sulfates and oxide and sulfate groups as anions. Calcination at 600°C led to the almost complete removal of sulfate groups; as a result, the formation of an oxide structure came into play, and it was completed by the production of finely dispersed iron oxide in the ?-Fe2O3 modification (the average particle size of 3.2 nm) after treatment at 900°C. As the calcination temperature was increased from 500 to 700°C, an increase in the catalyst activity in hydrogen sulfide selective oxidation was observed because of a change in the state of the active component. A comparative study of the samples by temperature-programmed sulfidation made it possible to establish that an increase in the calcination temperature leads to an increase in the stability of the iron-containing catalysts to the action of a reaction atmosphere.  相似文献   

6.
The synthesis of COS from CO, CO2 and liquid sulfur in the presence and absence of hydrogen was explored. The reaction of H2 with liquid sulfur produced H2S and polysulfanes, which increase the reactivity of liquid sulfur and provide alternative complementary reaction routes for the formation of COS. The reaction from CO2 proceeds by forming CO as intermediate. Elevated pressure favors formation of COS from both carbon oxides due to the increasing residence time and the saturation of gases in the liquid. Above 350 °C, the solubility of H2S in sulfur and the hydrogenation of COS limit the conversion of CO. The approach provides a highly efficient method for the preparation of COS under mild reaction conditions, without using a catalyst or water adsorbents.  相似文献   

7.
One-pot tandem synthesis was developed for substituted quinolines (in up to 97% yields) involving a selective catalytic oxidation of primary amines to aldehydes and their condensation with arylamines under the action of a dispersion of Fe(CrO2)2 and water solution of H2O2 at room temperature. The stage of catalytic oxidation of alcohols was accelerated by photoactivation. A presumable mechanism of the photoactivated tandem synthesis of 2-methylquinoline was suggested. Catalyst Fe(CrO2)2 was prepared by photochemical synthesis.  相似文献   

8.
Pt-based catalysts cannot be used permanently for the diesel after-treatment system because the catalytic activity is decreased due to coarsening of Pt particles at high temperature of the exhaust gas. In this study, to prevent Pt-based catalyst from deactivation, Nd was added to the Pt/SiO2 catalyst, and the effect of the Nd addition on the catalytic activity was investigated. The Pt/SiO2 catalyst showed a high catalytic activity for the oxidation of NO but was severely deactivated after the fast thermal aging process. Pt crystallite size was increased and some Pt particles were buried in the SiO2 pore during the fast thermal aging process, which led to the decrease of catalytic activity. Nd-added Pt/SiO2 catalyst showed lower activity than Pt/SiO2 catalyst, but Pt–Nd/SiO2 catalyst maintained its catalytic activity after fast thermal aging process. It can be postulated that a stable Nd silicate, on which Pt particle is placed, protects SiO2 pores from destruction and so the number of the catalytically active sites remains nearly unchanged. As a result the Pt–Nd/SiO2 catalyst maintained its catalytic activity after fast thermal aging process.  相似文献   

9.
The results of recent studies in environmental catalysis are considered: design of support and catalysts for processes in moving — and fluidized catalyst beds; design of catalysts and processes for catalytic incineration of fuels and wastes, purification of hydrogen sulfide containing gases via direct catalytic H2S oxidation to sulfur; design of monolith ceramic honeycomb catalysts for gas purification.  相似文献   

10.
Ce-Ti-W-O x catalysts were prepared and applied to the NH3-selective catalytic reduction (SCR) reaction. The experimental results showed that the Ce-Ti-W-O x catalyst prepared by the hydrothermal method exhibited higher NO conversion than those synthesised via the sol-gel and impregnating methods, while the optimal content of WO3 and molar ratio of Ce/Ti were 20 mass % and 4: 6, respectively. Under these conditions, the catalyst exhibited the highest level of catalytic activity (the NO conversion reached values higher than 90 %) across a wide temperature range of 225–450°C, with a range of gas hourly space velocity (GHSV) of 40000–140000 h?1. The catalyst also exhibited good resistance to H2O and SO2. The influences of morphology, phase structure, and surface properties on the catalytic performance were investigated by N2 adsorption-desorption measurement, XRD, XPS, H2-TPR, and SEM. It was found that the high efficiency of NO removal was due to the large BET surface area, the amorphous surface species, the change to element valence states, and the strong interaction between Ce, Ti, and W.  相似文献   

11.
Carbon dioxide (CO2) and hydrogen sulfide (H2S) are generally concomitant with methane (CH4) in natural gas and traditionally deemed useless or even harmful. Developing strategies that can simultaneously convert both CO2 and H2S into value‐added products is attractive; however it has not received enough attention. A solar‐driven electrochemical process is demonstrated using graphene‐encapsulated zinc oxide catalyst for CO2 reduction and graphene catalyst for H2S oxidation mediated by EDTA‐Fe2+/EDTA‐Fe3+ redox couples. The as‐prepared solar‐driven electrochemical system can realize the simultaneous conversion of CO2 and H2S into carbon monoxide and elemental sulfur at near neutral conditions with high stability and selectivity. This conceptually provides an alternative avenue for the purification of natural gas with added economic and environmental benefits.  相似文献   

12.
Eight Dawson‐type polyoxometalates were successfully prepared and used in an octanal/air oxidative desulfurization (ODS) system for model oil. Among which, the classical 2:18 polyoxometalate K6[α‐P2W18O62]·14H2O exhibited the best catalytic performance with a sulfur removal ratio of 99.63%. Then, K6[α‐P2W18O62]·14H2O was supported on graphene oxide (GO) to afford K6P2W18O62/GO using the hydrothermal method. Due to the in situ adsorption of the supported catalysts in the ODS process, the sulfur removal ratio was 96.10% without extraction treatment. Compared with the octanal/air ODS system using pure GO as an adsorbent for the oxidation products, the sulfur removal ratio increased from 89.21 to 96.10%, and the n‐octanal/S molar ratio decreased from 24 to 4. To facilitate the recycling of the catalyst and avoid catalyst loss, K6[α‐P2W18O62]·14H2O was supported on magnetic graphene oxide (mGO) to afford K6P2W18O62/mGO. The results showed that the supported catalyst could be easily recovered with the aid of an external magnetic field, while maintaining high catalytic activity during five cycles of reuse with little catalyst loss. Furthermore, all the prepared materials were analyzed by a series of characterizations, and the reaction mechanism of the studied system was proposed through contrast tests and GC‐MS characterization analysis.  相似文献   

13.
Catalytic oxidative desulfurization(ODS) of model oil and commercial oil samples was investigated using an air-assisted performic acid oxidation system with a phase transfer or emulsion catalyst comprising a quaternary ammonium salt-based heteropolyoxometalate.Different emulsion catalysts with a Keggin type heteroployoxometalate anion(containing W,Mo,and V) and cetyltrimethylammonium bromide cation were prepared and characterized by X-ray fluorescence,Fourier transform infrared spectroscopy,and scanning electron microscopy.[C16H33N(CH3)3]3[PW9Mo3O40] was the most effective catalyst in the current oxidation system,which reduced the sulfur content of the model oil from 1275 μg/g to 57 μg/g.The reactivity order of different model sulfur compounds was thiophene < dibenzothiophene < 4,6-dimethyldibenzothiophene. The ODS of model sulfur compounds followed first order kinetics with apparent activation energy from 29 to 27 kJ/mol.The catalysts also performed efficiently in the ODS of the industrial oil samples,including untreated naphtha,light gas oil,heavy gas oil,and Athabasca oil sands derived bitumen,for which sulfur removal rates were 83%,85%,68% and 64%,respectively.  相似文献   

14.
In this work, we report a new catalytic oxidative desulfurization (CODS) system based on (TBA)PWFe/PVA/CTS nanohybrid film as a highly active catalyst. The nanohybrid material was successfully fabricated by the composition of tetra (n‐butyl) ammonium salt of Fe‐substituted phosphotungstate, ((n‐C4H9)4N)4[PW11Fe(H2O)O39] abbreviated as (TBA)PWFe, polyvinyl alcohol (PVA), and chitosan (CTS). The composite was characterized using various analytical techniques including FT‐IR, UV–vis, XRD, and SEM. The results revealed the hydrogen‐bonding interaction between inorganic (TBA)PWFe clusters and organic polymers. The catalytic activity of (TBA)PWFe/PVA/CTS was evaluated in the CODS of real gas oil. Also, the solutions of heterocyclic thiophenic compounds (HTCs) in n‐heptane were tasted as simulated fuels. It was found that the removal efficiency of HTCs in the presence of (TBA)PWFe/PVA/CTS catalyst reached as high as 95% at 60 °C after 2 h. The significant catalytic performance of the nanohybrid film might be attributed to its amphiphilicity and multifunctional active sites, which enhances adsorption and oxidation of sulfur compounds. Moreover, the (TBA)PWFe/PVA/CTS composite can be easily recovered and reused by simple filtration, making it a suitable catalyst for cleaner processing.  相似文献   

15.
The catalytic activity of ceria-supported Pd for selective hydrogenation of CO is well preserved in the presence of 30 ppm H2S due to the parallel oxidation of sulfur by CeO2 under standard methanol synthesis conditions. The bifunctional nature of this catalyst opens a route for the conversion of sulfur-contaminated gas streams such as the integrated gasification combined cycle syngas or biogas into liquid fuels if desulfurization by conventional means is not practical.  相似文献   

16.
本研究采用等量浸渍法、化学沉淀法和超声浸渍法合成了一系列具有良好外露晶面的Fe/MgO催化剂。采用X射线粉末衍射、高分辨透射电子显微镜、CO2程序升温脱附、H2程序升温还原、X射线光谱学和N2物理吸附等物理化学方法对催化剂进行了表征。MgO纳米晶载体的碱性会影响费-托合成产物的选择性。在超声浸渍过程中,MgO纳米晶载体的碱性得到了保持。研究结果显示,Fe/MgO催化剂的碱性会提高CO解离速率和产物中烯烃的选择性。此外,相比于MgO(100)晶面,MgO(111)晶面负载铁基催化剂具有更高的活性(TOF)和烯烃选择性。MgO(111)晶面上更有利于CO的吸附,抑制二次加氢反应,提高产物中烯烃的收率。  相似文献   

17.
Selective CO oxidation in a mixture simulating the methanol steam reforming product with an air admixture was studied over Ru/Al2O3 catalysts in a quasi-adiabatic reactor. On-line monitoring of the gas temperature in the catalyst bed and of the residual CO concentration at different reaction conditions made it possible to observe the ignition and quenching of the catalyst surface, including transitional regimes. A sharp decrease in the residual CO concentration takes place when the reaction passes to the ignition regime. The evolution of the temperature distribution in the catalyst bed in the ignition regime and the specific features of the steady-state and transitional regimes are considered, including the effect of the sample history. In selective CO oxidation and in H2 oxidation in the absence of CO, the catalyst is deactivated slowly because of ruthenium oxidation. In both reactions, the deactivated catalyst can be reactivated by short-term treatment with hydrogen. A 0.1% Ru/Al2O3 catalyst is suggested. In the surface ignition regime, this catalyst can reduce the residual CO concentration from 0.8 vol % to 10–15 ppm at O2/CO = 1 even in the presence of H2O and CO2 (up to ~20 vol %) at a volumetric flow rate of ~100 1 (g Cat)?1 h?1, which is one magnitude higher than the flow rates reported for this process in the literature.  相似文献   

18.
A benzothiophene S‐oxide catalyst, generated in situ by sulfur oxidation with H2O2, mediates the oxidative coupling of 2‐naphthols. Key to the catalytic process is the capture and inversion of reactivity of a 2‐naphthol partner, using an interrupted Pummerer reaction of an unusual benzothiophene S‐oxide, followed by subsequent coupling with a second partner. The new catalytic manifold has been showcased in the synthesis of the bioactive natural products, (±)‐nigerone and (±)‐isonigerone. Although Pummerer reactions are used widely, their application in catalysis is rare, and our approach represents a new catalytic manifold for metal‐free C?C bond formation.  相似文献   

19.
A series of MoO3 doped Fe2O3 catalysts prepared by the co-precipitation method were investigated in the selective catalytic reduction of NO by NH3 (NH3-SCR). The catalysts displayed excellent catalytic activity from 225 to 400°C and high tolerance to SO2/H2O poisoning at 300°C. To characterize the catalysts the N2-BET, XRD, Raman, NO-TPD, NH3-TPD and in situ DRIFTS were carried out. It was found that the main reason explaining a high NH3-SCR performance might be the synergistic effect between Fe and Mo species in the catalyst that could enhance the dispersion of Fe2O3 and increase NH3 adsorption on the catalyst surface.  相似文献   

20.
Several transition metal (Cu2+, Fe3+, Zn2+, Mn4+, and Cr6+) salts of H4PMo11VO40 were prepared and their solutions were used initially for H2S removal in the liquid redox process. H2S removal tests were performed by dynamic absorption experiments. Among these polyoxometalates, that with the Cu2+ cation was found to have pronounced H2S removal performance with the removal efficiency of up to 98%. The relevant oxidative desulfurization mechanism and the role of Cu2+ were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号