首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The equations of thermal vibrational convection of a generalized Newtonian fluid are presented in the case of high-frequency vibration. A condition of quasi-equilibrium of the generalized Newtonian fluid is formulated: its particular case is the condition for rigid (quasi-solid) state. The rigid state stability is investigated for the infinite inclined layer of the nonlinearly viscous Williamson fluid. It is shown that, when heated from below, the rigid state may lose stability for layers oriented almost vertically or horizontally. High-frequency vibration stabilizes the fluid equilibrium state.  相似文献   

2.
In contrast to a Newtonian fluid, a viscoplastic fluid can be in a state of mechanical equilibrium when heat is supplied from the side. Therefore, natural convection in a viscoplastic fluid heated from the side occurs only when the determining parameters exceed certain threshold values. The threshold conditions for the onset of convection for a flat vertical layer have been investigated several times [1–4]. The present paper is an investigation of the conditions of occurrence of plane-parallel natural convection of a viscoplastic fluid in regions with cylindrical symmetry: in a vertical annular layer and in a vertical circular tube.  相似文献   

3.
We numerically simulate the initiation of an average convective flow in a system composed of a horizontal binary fluid layer overlying a homogeneous porous layer saturated with the same fluid under gravitational field and vibration. In the layers, fixed equilibrium temperature and concentration gradients are set. The layers execute high-frequency oscillations in the vertical direction. The vibration period is small compared with characteristic timescales of the problem. The averaging method is applied to obtain vibrational convection equations. Using for computation the shooting method, a numerical investigation is carried out for an aqueous ammonium chloride solution and packed glass spheres saturated with the solution. The instability threshold is determined under two heating conditions—on heating from below and from above. When the solution is heated from below, the instability character changes abruptly with increasing solutal Rayleigh number, i.e., there is a jump-wise transition from the most dangerous shortwave perturbations localized in the fluid layer to the long-wave perturbations covering both layers. The perturbation wavelength increases by almost 10 times. Vibrations significantly stabilize the fluid equilibrium state and lead to an increase in the wavelength of its perturbations. When the fluid with the stabilizing concentration gradient is heated from below, convection can occur not only in a monotonous manner but also in an oscillatory manner. The frequency of critical oscillatory perturbations decreases by 10 times, when the long-wave instability replaces the shortwave instability. When the fluid is heated from above, only stationary convection is excited over the entire range of the examined parameters. A lower monotonic instability level is associated with the development of perturbations with longer wavelength even at a relatively large fluid layer thickness. Vibrations speed up the stationary convection onset and lead to a decrease in the wavelength of most dangerous perturbations of the motionless equilibrium state. In this case, high enough amplitudes of vibration are needed for a remarkable change in the stability threshold. The results of numerical simulation show good agreement with the data of earlier works in the limiting case of zero fluid layer thickness.  相似文献   

4.
The nonlinear stability of the natural convection in a vertical fluid layer between two flat plates with different temperatures is investigated by a direct method to find the equilibrium states of the secondary convection. We confine ourselves to two-dimensional flows and assume that the aspect ratio of the fluid layer is very large. Since the Prantl number is assumed to be very small, the buoyancy effect caused by temperature disturbances is negligible. As a result we obtained a neutral surface of the energy of the fundamental mode of the secondary convection. It is concluded that there is no finite amplitude instability below the critical Grashof number derived from linear stability theory, and that both the unstable equilibrium solution (threshold amplitude solution) and the stable equilibrium solution (finite amplitude solution) are found outside the neutral curve of the linear stability. Our results are almost consistent with those of Nagata and Busse (1983), but are more accurate and more thorough.  相似文献   

5.
The stability analysis of the quiescent state in a Maxwell fluid-saturated densely packed porous medium subject to vertical concentration and temperature gradients is presented. A single phase model with local thermal equilibrium between the porous matrix and the Maxwell fluid is assumed. The critical Darcy–Rayleigh numbers and the corresponding wave numbers for the onset of stationary and oscillatory convection are determined. A Lorenz like system is obtained for weakly nonlinear stability analysis.  相似文献   

6.
Instability of a plane horizontal layer of an incompressible binary gas mixture stratified in the gravity field under the action of a transverse temperature gradient modulated in time is studied. The case of solid impermeable boundaries of the layer, where the flux of matter vanishes, is considered. The analysis is based on the Floquet method applied to linearized equations of convection in the Boussinesq approximation. It is shown that there are regions of parametric instability at finite frequencies. In addition to the synchronous or subharmonic response to an external action, the instability may be related to quasiperiodic disturbances. Depending on the amplitude and frequency, modulation can stabilize the unstable basic state and also destabilize the equilibrium of the fluid. The threshold values of convection for modulations of temperature and translational vertical vibrations are compared.  相似文献   

7.
Thermal gravity convection in a horizontal layer of compressible perfect gas heated from below and a van der Waals gas near the critical state is investigated. The characteristics of the isentropic equilibrium of a compressible medium with a van der Waals equation of state are considered. The known conditions of convection onset in the perfect and van der Waals gases are checked on the basis of a solution of the complete and linearized equations. The restrictions imposed in deriving the known formulas for the adiabatic temperature gradients used in the conditions of absence and onset of convection are discussed. The characteristics of the convective heat transfer are examined, including the causes of the heat-transfer deterioration in the near-critical medium above the hydrostatic equilibrium threshold.  相似文献   

8.
Scenarios of the development of continuous families of steady-state regimes branching off from mechanical equilibrium are investigated for the plane problem of filtrational convection of a multicomponent fluid saturating a porous block of rectangular cross-section. Convection of two- and three-component fluids is considered and unidirectional and differently directed vertical temperature and concentration gradients are analyzed. A new scenario of the formation of a continuous family of steady-state solutions realized in the case of oscillatory instability of mechanical equilibrium is studied.  相似文献   

9.
A study is made of the stability of the steady periodic regime that arises in a horizontal layer of fluid in the presence of spatial modulation of of the temperature on the solid bottom boundary. The upper free boundary of the layer is in contact with the atmosphere. The fundamental resonance values of the wave number of the modulation are found; there are five of them. If the temperature of the lower boundary of the layer is constant, and the temperature gradient is not too large, the fluid is in equilibrium. When the temperature gradient passes through the critical value, the equilibrium ceases to be stable, and steady convection develops in the fluid [1]. In the presence of spatial modulation of the temperature on the lower boundary of the layer the fluid cannot be in equilibrium, and a spatially periodic steady regime is established in it. The aim of the present paper is to find the critical values of the temperature gradient at which this fundamental steady regime becomes unstable and a secondary steady regime develops in the fluid. An analogous problem for the case when both boundaries of the layer are free surfaces and without allowance for the influence of the atmosphere has been solved by Vozovoi and Nepomnyashchii [2].  相似文献   

10.
In this article, free convection heat transfer over a vertical cylinder with variable surface temperature distributions in a porous medium is analyzed. It is assumed that the fluid and solid phases are not in local thermal equilibrium and, therefore, a two-temperature model of heat transfer is applied. The coupled momentum and energy equations are presented and then they are transformed into ordinary differential equations. The similarity equations are solved numerically. The resulting velocity, streamlines, temperature distributions for fluid and solid phases are shown for different values of parameters entering into the problem. The calculated values of the local Nusselt numbers for both solid and fluid phases are also shown.  相似文献   

11.
A mathematical model of fluid convection under microgravity conditions is considered. The equation of state is used in a form that allows considering the fluid as a weakly compressible medium. Based on the previously proposed mathematical model of convection of a weakly compressible fluid, unsteady convective motion in a vertical band, with a heat flux periodic in time set on the solid boundaries of this band, is considered. This model of convection allows one to study the problem with the boundary thermal model oscillating in an antiphase rather than in-phase mode, while the latter was required for the model of microconvection of an isothermally incompressible fluid. Exact solutions for velocity components and temperature are derived, and the trajectories of fluid particles are constructed. For comparison, the trajectories predicted by the classical Oberbeck-Boussinesq model of convection and by the microconvection model are presented.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 2, pp. 52–63, March–April, 2005.  相似文献   

12.
The hypothesis of the onset of nonstationarity and chaos in a hydrodynamic system as a result of the nonlinear interaction of a small number of degrees of freedom is verified experimentally with reference to fluid convection in a toroidal channel. Regimes of motion of a fluid medium which correspond qualitatively to the Lorenz model are obtained experimentally. These include steady-state regimes, their bifurcations, nonuniqueness and instability, unsteady periodic and stochastic regimes. The spectral and statistical characteristics of the and unsteady processes are investigated, the nature of the onset of chaos is analyzed, and the results are compared with calculations. The mathematical model of the problem is refined.  相似文献   

13.
The onset of convection and its nonlinear regimes in a heated from below two-layer system consisting of a horizontal pure fluid layer and porous medium saturated by the same fluid is studied under the conditions of static gravitational field. The problem is solved numerically by the finite-difference method. The competition between the long-wave and short-wave convective modes at various ratios of the porous layer to the fluid layer thicknesses is analyzed. The data on the nature of convective motion excitation and flow structure transformation are obtained for the range of the Rayleigh numbers up to quintuple supercriticality. It has been found that in the case of a thick porous layer the steady-state convective regime occurring after the establishment of the mechanical equilibrium becomes unstable and gives way to the oscillatory regime at some value of the Rayleigh number. As the Rayleigh number grows further the oscillatory regime of convection is again replaced by the steady-state convective regime.  相似文献   

14.
The effects of viscous dissipation on unsteady free convection from an isothermal vertical flat plate in a fluid saturated porous medium are examined numerically. The Darcy–Brinkman–Forchheimer model is employed to describe the flow field. A new model of viscous dissipation is used for the Darcy–Brinkman–Forchheimer model of porous media. The simultaneous development of the momentum and thermal boundary layers are obtained by using a finite difference method. Boundary layer and Boussinesq approximation have been incorporated. Numerical calculations are carried out for various parameters entering into the problem. Velocity and temperature profiles as well as local friction factor and local Nusselt number are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach steady state.  相似文献   

15.
Thermal convection of a fluid in a horizontal cylinder rotating about its own axis with uniformly volume-distributed internal heat sources is experimentally investigated. The enclosure boundary temperature was kept constant. The threshold of the excitation of convective flows and their structure are studied as functions of the heat-release intensity and the rotation velocity. The experiments are performed with water and water-glycerin solutions. It is shown that rapidly rotating fluid is in a stable quasiequilibrium state, namely, the temperature distribution is axisymmetric and has a maximum at the center of the enclosure. It is found that with decrease in the rotation velocity a convective flow arises thresholdwise, in the form of vortex cells periodically arranged along the axis. The thermal convection in the rotating enclosure is shown to be determined by the effects of two different mechanisms. One of these is due to the centrifugal force of inertia and plays the stabilizing role, while the other, thermovibrational mechanism is connected with nonisothermal fluid oscillations under the action of gravity in the enclosure-fitted reference frame and is responsible for the occurrence of mean thermal convection. The boundaries of the convection generation are plotted in the plane of the governing dimensionless parameters and the heat transfer in the supercritical region is studied.  相似文献   

16.
The stability of the equilibrium state of a flat layer bounded by rigid walls is studied using a microconvection model. The behavior of the complex decrement for longwave perturbations has an asymptotic character. Calculations of the full spectral problem were performed for melted silicon. Unlike in the classical Oberbeck–Boussinesq model, the perturbations in the microconvection model are not monotonic. It is shown that for small Boussinesq parameters, the spectrum of this problem approximates the spectra of the corresponding problems for a heatconducting viscous fluid or thermal gravitational convection when the Rayleigh number is finite.  相似文献   

17.
A linear stability analysis was performed in order to study the onset of thermal convection in the presence of a strong viscosity variation, with a special emphasis on the condition for the stagnant-lid (ST) convection where a convection takes place only in a sublayer beneath a highly viscous lid of cold fluid. We consider the temporal evolution (growth or decay) of an infinitesimal perturbation superimposed to a Boussinesq fluid with an infinite Prandtl number which is in a static (motionless) and conductive state in a basally heated planar layer or spherical shell. The viscosity of the fluid is assumed to be exponentially dependent on temperature. The linearized equations for conservations of mass, momentum, and internal (thermal) energy are numerically solved for the critical Rayleigh number, Ra c , as well as the radial profiles of eigenfunctions for infinitesimal perturbations. The above calculations are repeatedly carried out by systematically varying (i) the magnitude of the temperature dependence of viscosity, E, and (ii) the ratio of the inner and outer radii of the spherical shell, γ. A careful analysis of the vertical structure of incipient flows demonstrated that the dominance of the ST convection can be quantitatively identified by the vertical profile of Δ h (a measure of conversion between horizontal and vertical flows), regardless of the model geometries. We also found that, in the spherical shell relevant to the Earth’s mantle (γ = 0.55), the transition into ST convection takes place at the viscosity contrast across the layer ${r_\eta\simeq10^4}$ . Taken together with the fact that the threshold value of r η falls in the range of r η for a so-called sluggish-lid convection, our finding suggests that the ST-mode of convection with horizontally elongated convection cells is likely to arise in the Earth’s mantle solely from the temperature-dependent viscosity.  相似文献   

18.
A linear stability analysis is carried out to study viscoelastic fluid convection in a horizontal porous layer heated from below and cooled from above when the solid and fluid phases are not in a local thermal equilibrium. The modified Darcy–Brinkman–Maxwell model is used for the momentum equation and two-field model is used for the energy equation each representing the solid and fluid phases separately. The conditions for the onset of stationary and oscillatory convection are obtained analytically. Linear stability analysis suggests that, there is a competition between the processes of viscoelasticity and thermal diffusion that causes the first convective instability to be oscillatory rather than stationary. Elasticity is found to destabilize the system. Besides, the effects of Darcy number, thermal non-equilibrium and the Darcy–Prandtl number on the stability of the system are analyzed in detail.  相似文献   

19.
We investigate Rayleigh–Benard convection in a porous layer subjected to gravitational and Coriolis body forces, when the fluid and solid phases are not in local thermodynamic equilibrium. The Darcy model (extended to include Coriolis effects and anisotropic permeability) is used to describe the flow, whilst the two-equation model is used for the energy equation (for the solid and fluid phases separately). The linear stability theory is used to evaluate the critical Rayleigh number for the onset of convection and the effect of both thermal and mechanical anisotropy on the critical Rayleigh number is discussed.  相似文献   

20.
The results of comparative experiments on the convection of magnetic fluids and molecular binary fluid mixtures in connected vertical channels heated from below are discussed. In both media, near the equilibrium stability threshold, flows in the form of specific swing oscillations are observed. The results of the experiment form a basis for a three-component model for magnetic fluid convection which takes into account the thermodiffusion separation of the dispersion medium components and the weak sedimentation of magnetic particles. The results of numerical simulation and experiment are compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号