首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Acetylacetonato-platina[6]- and -platina[7]helicenes have been prepared from 2-pyridyl-substituted benzophenanthrene ligands by following a two-step cycloplatination reaction. The photophysical properties (UV-visible absorption and emission behavior) and chiroptical properties (circular dichroism and molar rotation) of the resolved enantiomers have been measured. These metallahelicenes constitute a novel family of easily accessible helicene derivatives that exhibit large and tuneable chiroptical properties that can be rationalized theoretically and compared to the parent [6]- and [7]carbohelicenes. Furthermore, they are red phosphors at room temperature and their large chiroptical properties can be modulated by oxidation of the metal center to Pt(IV). Hetero- and homochiral diastereomeric bis(metallahelicene)s that possess a rare Pt(III)-Pt(III) scaffold bridged by benzoato ligands have also been prepared. It is shown that the heterochiral (P,M)-bis(Pt(III)-[6]helicene) 9a(1) can isomerize into the homochiral (P,P)- and (M,M)-bis(Pt(III)-[6]helicene) 9a(2). Spectral assignments and an analysis of the optical rotation of these systems were made with the help of time-dependent density functional theory. The calculations highlight the contributions of the metal centers to the chiroptical properties. For 9a(1) and 9a(2), σ-π conjugation between the helicenes and the Pt-Pt moiety may contribute strongly to the optical rotation and electronic circular dichroism.  相似文献   

2.
Reaction of the trinuclear [NBu 4] 2[(R F) 2Pt(mu-PPh 2) 2Pt(mu-PPh 2) 2Pt(R F) 2] ( 1, R F = C 6F 5) with HCl results in the formation of the unusual anionic hexanuclear derivative [NBu 4] 2[{(R F) 2Pt(mu-PPh 2) 2Pt(mu-PPh 2) 2Pt(mu-Cl)} 2] ( 4, 96 e (-) skeleton) through the cleavage of two Pt-C 6F 5 bonds. The reaction of 4 with Tl(acac) yields the trinuclear [NBu 4][(R F) 2Pt(mu-PPh 2) 2Pt(mu-PPh 2) 2Pt(acac)] ( 5, 48 e (-) skeleton), which is oxidized by Ag (+) to form the trinuclear compound [(R F) 2Pt(mu-PPh 2) 2Pt(mu-PPh 2) 2Pt(acac)][ClO 4] ( 6, 46 e (-) skeleton) in mixed oxidation state Pt(III)-Pt(III)-Pt(II), which displays a Pt-Pt bond. The reduction of 6 by [NBu 4][BH 4] gives back 5. The treatment of 6 with Br (-) (1:1 molar ratio) at room temperature gives a mixture of the isomers [(PPh 2R F)(R F)Pt(mu-PPh 2)(mu-Br)Pt(mu-PPh 2) 2Pt(acac)], having Br trans to R F ( 7a) or Br cis to R F ( 7b), which are the result of PPh 2/C 6F 5 reductive coupling. The treatment of 5 with I 2 (1:1 molar ratio) yields the hexanuclear [{(PPh 2R F)(R F)Pt(mu-PPh 2)(mu-I)Pt(mu-PPh 2) 2Pt(mu-I)} 2] ( 8, 96 e (-) skeleton), which is easily transformed into the trinuclear compound [(PPh 2R F)(R F)Pt(mu-PPh 2)(mu-I)Pt(mu-PPh 2) 2Pt(I)(PPh 3)] ( 9, 48 e (-) skeleton). Reaction of [(R F) 2Pt(mu-PPh 2) 2Pt(mu-PPh 2) 2Pt(NCMe) 2] ( 10) with I 2 at 213 K for short reaction times gives the trinuclear platinum derivative [(R F) 2Pt(mu-PPh 2) 2Pt(mu-PPh 2) 2Pt(I) 2] ( 11, 46e skeleton) in mixed oxidation state Pt(III)-Pt(III)-Pt(II) and with a Pt-Pt bond, while the reaction at room temperature and longer reactions times gives 8. The structures of the complexes have been established by multinuclear NMR spectroscopy. In particular, the (195)Pt NMR analysis, carried out also by (19)F- (195)Pt heteronuclear multiple-quantum coherence, revealed an unprecedented shielding of the (195)Pt nuclei upon passing from Pt(II) to Pt(III). The X-ray diffraction structures of complexes 4, 5, 6, 9, and 11 have been studied. A detailed study of the relationship between the complexes has been carried out.  相似文献   

3.
Pentanuclear linear chain Pt(II,III) complexes [[Pt2(NH3)2X2((CH3)3CCONH)2(CH2COCH3)]2[PtX'4]].nCH3COCH3 (X = X' = Cl, n = 2 (1a), X = Cl, X' = Br, n = 1 (1b), X = Br, X' = Cl, n = 2 (1c), X = X' = Br, n = 1 (1d)) composed of a monomeric Pt(II) complex sandwiched by two amidate-bridged Pt dimers were synthesized from the reaction of the acetonyl dinuclear Pt(III) complexes having equatorial halide ligands [Pt2(NH3)2X2((CH3)3CCONH)2(CH2COCH3)]X' ' (X = Cl (2a), Br (2b), X' ' = NO3-, CH3C6H4SO3-, BF4-, PF6-, ClO4-), with K2[PtX'4] (X' = Cl, Br). The X-ray structures of 1a-1d show that the complexes have metal-metal bonded linear Pt5 structures, and the oxidation state of the metals is approximately Pt(III)-Pt(III)...Pt(II)...Pt(III)-Pt(III). The Pt...Pt interactions between the dimer units and the monomer are due to the induced Pt(II)-Pt(IV) polarization of the Pt(III) dimeric unit caused by the electron withdrawal of the equatorial halide ligands. The density functional theory calculation clearly shows that the Pt...Pt interactions between the dimers and the monomer are made by the electron transfer from the monomer to the dimers. The pentanuclear complexes have flexible Pt backbones with the Pt chain adopting either arch or sigmoid structures depending on the crystal packing.  相似文献   

4.
Reaction of the trinuclear Pt(III)-Pt(III)-Pt(II) [(C6F5)2Pt(III)(mu-PPh2)2Pt(III)(mu-PPh2)2Pt(C6F5)2] (2) derivative with NBu4Br or NBu4I results in the formation of the trinuclear Pt(II) complexes [NBu4][(PPh2C6F5)(C6F5)Pt(mu-PPh2)(mu-X)Pt(mu-PPh2)2Pt(C6F5)2] [X = I (3), Br (4)] through an intramolecular PPh2/C6F5 reductive coupling and the formation of the phosphine PPh2C6F5. The trinuclear Pt(II) complex [(PPh2C6F5)(C6F5)Pt(mu-PPh2)Pt(mu-PPh2)2Pt(C6F5)2] (5), which displays two Pt-Pt bonds, can be obtained either by halide abstraction in 4 or by refluxing of 2 in CH2Cl2. This latter process also implies an intramolecular PPh2/C6F5 reductive coupling. Treatment of complex 5 with several ligands (Br-, H-, and CO) results in the incorporation of the ligand to the cluster and elimination of one (X = H-) or both (X = Br-, CO) Pt-Pt bonds, forming the trinuclear complexes [NBu4][(PPh2C6F5)(C6F5)Pt(mu-PPh2)(mu-X)Pt(mu-PPh2)2Pt(C6F5)2] [X = Br (6), H (7)] or [(PPh2C6F5)(C6F5)Pt(mu-PPh2)2Pt(mu-PPh2)(CO)Pt(C6F5)2(CO)] (8). The structures of the complexes have been established on the basis of 1H, 19F, and 31P NMR data, and the X-ray structures of the complexes 2, 3, 5, and 7 have been established. The chemical relationship between the different complexes has also been studied.  相似文献   

5.
A 1,8-naphthalimide with [6]helicene derivative scaffold has been designed and synthesized. The (P)- and (M)-enantiomers of the [6]helicene derivative were resolved by HPLC on a chiral column. The single crystal of the [6]helicene derivative exhibits an intermolecular interactions of the 1,8-naphthalimide units.  相似文献   

6.
The phosphine-bridged linear trinuclear and pentanuclear complexes with Pd(II)-Pt(II)-Pd(II), Ni(II)-Pt(II)-Ni(II), and Rh(III)-Pd(II)-Pt(II)-Pd(II)-Rh(III) metal-ion sequences were almost quantitatively formed by the stepwise phosphine-bridging reaction of the terminal phosphino groups of tris[2-(diphenylphosphino)ethyl]phosphine (pp3), which is the tetradentate bound ligand of the starting Pd(II) and Ni(II) complexes. The solid-state structures of the trinuclear complexes were determined by X-ray structural analyses, and the structures of the polynuclear complexes in solution were characterized by NMR spectroscopy. The trans and cis isomers of the trinuclear and pentanuclear complexes, which arise from the geometry around the Pt(II) center, were selectively obtained simply by changing the counteranion of the starting complexes: the tetrafluoroborate salts, [MX(pp3)](BF4) [M = Pd(II) or Ni(II), X = Cl- or 4-chlorothiophenolate (4-Cltp-)], gave only the trans isomers, and the chloride salt, [PdCl(pp3)]Cl, gave only the cis isomers. The formation of the trinuclear complex with the 4-Cltp- and chloro ligands, trans-[Pt(4-Cltp)2{PdCl(pp3)}2](BF4)2, proceeded with exchange between the thiolato ligand in the starting Pd(II) complex, [Pd(4-Cltp)(pp(3))](BF4), and the chloro ligands in the starting Pt(II) complex, trans-[PtCl2(NCC6H5)2], retaining the trans geometry around the Pt(II) center. In contrast, the formation reaction between [PdCl(pp3)]Cl and trans-[PtCl2(NCC6H5)2] was accompanied by the trans-to-cis geometrical change on the Pt(II) center to give the trinuclear complex, cis-[PtCl2{PdCl(pp3)}2]Cl2. The mechanisms of these structural conversions during the formation reactions were elucidated by the 31P NMR and absorption spectral changes. The differences in the catalytic activity for the Heck reaction were discussed in connection with the bridging structures of the polynuclear complexes in the catalytic cycle.  相似文献   

7.
A number of pivalamidate bridged dinuclear [PtII2(RNH2)4(NHCOtBu)2]2+, [PtIII2LL (RNH2)4(NHCOtBu)2]n+ (2RNH2 = 2NH3, 1,2-ethylenediamine, 1,2-diaminocyclohexane; L, L' = NO3-, H2O, or ketonate), trinuclear [{PtII(dap)(NHCOtBu)2}2PdIII]3+ (dap = 1,2-diaminopropane), tetranuclear [{PtII2(NH3)2(DACH)(NHCOtBu)2}2]4+ (DACH = 1,2-diaminocyclohexane), pentanuclear [{Pt2(C5H7O)(NH3)2Cl2(NHCOtBu)2}2PtCl4], and hexanuclear [Pt2(NH3)2(en)(NHCOtBu)2Pt(NO2)4]2 platinum complexes containing Pt(II)-Pt(II), Pt(II)-Pt(III), Pt(II)-Pd(III), and Pt(III)-Pt(III) interactions have been prepared and structurally characterized. The Pt-Pt interactions are characteristic of covalent, dative, or orbital symmetric Pt-Pt bonds. The dimeric Pt(III) complexes are able to activate C-H bonds of ketones to afford ketonate platinum(III) complexes. The Pt-Pt bonds are either doubly amidate-bridged or ligand unsupported. Their distances are 2.99-3.22 A for Pt(II)-Pt(II), 2.59-2.72 A for Pt(III)-Pt(III), 2.98 A for Pt(II)-Pt(III), and 2.66 A for Pt(II)-Pd(III) bonds depending on the oxidation states of the two metals and the ancillary ligands.  相似文献   

8.
Two cyano-bridged tetranuclear complexes composed of Mn(III) salen (salen = N,N'-ethylene bis(salicylideneiminate)) and hexacyanometalate(III) (M = Fe, Cr) in a stoichiometry of 3:1 have been selectively synthesized using {NH2(n-C12H25)2}3[M(III)(CN)6] (M(III) = Fe, Cr) starting materials: [{Mn(salen)(EtOH)}3{M(CN)6}] (M = Fe, 1; Cr, 2). Compounds 1 and 2 are isostructural with a T-shaped structure, in which [M(CN)6]3- assumes a meridional-tridentate building block to bind three [Mn(salen)(EtOH)]+ units. The strong frequency dependence and observation of hysteresis on the field dependence of the magnetization indicate that 1 is a single-molecule magnet.  相似文献   

9.
A series of palladium(II) and platinum(II) complexes possessing pentafluorophenyl ligands of the general formula [M(L-L)(C6F5)Cl][space](M = Pd 3; L-L=tmeda (N,N,N',N',-tetramethylethylenediamine) a; 1,2-bis(2,6-dimethylphenylimino)ethane) b; dmpe (1,2-bis(dimethylphosphino)ethane) c; dcpe (1,2-bis(dicyclohexylphosphino)ethane) d; Pt ; L-L=tmeda a; 1,2-bis[3,5-bis(trifluoromethyl)phenylimino]-1,2-dimethylethane b; dmpe c; dcpe d) were readily synthesized from the dimer [M(C6F5)(tht)(mu-Cl)2] (M=Pd 1b, Pt 2b; tht=tetrahydrothiophene) and the corresponding bidentate ligand. In the case of palladium, the corresponding iodo analogues (6a-c) were readily synthesized in a one-pot reaction from [Pd2(dba)3], iodopentafluorobenzene, and the appropriate ligand. The platinum complexes 4c-d were then converted to the water complexes [Pt(L-L)(C6F5)(OH2)]OTf (L-L =dmpe 7a; dcpe 7b)via reaction with AgOTf in the presence of water. Attempts to convert the palladium complexes 3c-d to the corresponding water complexes resulted in the disproportionation of the intermediate water complex to form [Pd(L-L)(C6F5)2] (L-L=dmpe 8) or [Pd(L-L)2][OTf]2(L-L=dcpe 9). Upon standing in solution for prolonged periods, complex 7a undergoes an identical disproportionation reaction to the Pd analogues to form [Pt(L-L)(C6F5)2] (L-L=dmpe 10). Complexes 4c and 4d were converted to the corresponding hydrides (11b-c, respectively) using two different hydride sources: 11a was formed by the reaction of with NaBH4 in refluxing THF, while 11b was synthesized in near quantitative yield using [Cp2ZrH2] in refluxing THF. Attempts to synthesize eta2-tetrafluorobenzyne complexes [Pt(L-L)(C6F4)] (L-L=dmpe, dcpe) from reaction of 11a-b with butyllithium were unsuccessful. The molecular structures of 3a,4a, 4c, 4d, 6b, 7a, 8, 11b and have been determined by X-ray crystallographic studies, and are discussed.  相似文献   

10.
A novel trimetallic cluster [Ru5CRh2Pt2(CO)16(dppm)2] was synthesized via coupling of two neutral clusters-[Ru5C(CO)15] and [Rh2Pt2(CO)6(dppm)2]. The structure of this mixed metal complex was established using X-ray crystallography and 31P NMR spectroscopy. It was found that the reaction between [Ru6C(CO)17] and [Pt2(CO)3(dppm)2] leads to spontaneous electron transfer between these polynuclear complexes and results in the formation of an unusually stable cluster "salt" {[Ru6(CO)16]2-[Pt2(CO)2(dppm)2]2+}, which was characterized by crystallographic and spectroscopic methods. Heating of the Ru6-Pt2 ion pair in an autoclave (145 degrees C, 15 atm N2) results in fusion of the metal frameworks to give a nonanuclear mixed metal [Ru6C(CO)16Pt3(dppm)2] cluster in a good yield. The latter complex was obtained earlier as a minor product of another thermal reaction and now has been additionally characterized by 31P NMR spectroscopy.  相似文献   

11.
Amidate-bridged diplatinum(II) entities [Pt(2)(bpy)(2)(μ-amidato)(2)](2+) (amidate = pivalamidate and/or benzamidate; bpy = 2,2'-bipyridine) were covalently linked to one or two Ru(bpy)(3)(2+)-type derivatives. An amide group was introduced at the periphery of Ru(bpy)(3)(2+) derivatives to give metalloamide precursors [Ru(bpy)(2)(BnH)](2+) (abbreviated as RuBnH, n = 1 and 2), where deprotonation of amide BnH affords the corresponding amidate Bn, B1H = 4-(4-carbamoylphenyl)-2,2'-bipyridine, and B2H = ethyl 4'-[N-(4-carbamoylphenyl)carbamoyl]-2,2'-bipyridine-4-carboxylate. From a 1:1:1 reaction of [Pt(2)(bpy)(2)(μ-OH)(2)](NO(3))(2), RuBnH, and pivalamide, trinuclear complexes [Pt(2)(bpy)(2)(μ-RuBn)(μ-pivalamidato)](4+) (abbreviated as RuBn-Pt(2)) were isolated and characterized. Tetranuclear complexes [Pt(2)(bpy)(2)(μ-RuBn)(2)](6+) (abbreviated as (RuBn)(2)-Pt(2)) were separately prepared and characterized in detail. The quenching of the triplet excited state of the Ru(bpy)(3)(2+) derivative (i.e., Ru*(bpy)(3)(2+)) upon tethering the Pt(2)(bpy)(2)(μ-amidato)(2)(2+) moiety is strongly enhanced in RuB1-Pt(2) and (RuB1)(2)-Pt(2), while it is only slightly enhanced in RuB2-Pt(2) and (RuB2)(2)-Pt(2). These are partly explained by the driving forces for the electron transfer from the Ru*(bpy)(3)(2+) moiety to the Pt(2)(bpy)(2)(μ-amidato)(2)(2+) moiety (ΔG°(ET)); the ΔG°(ET) values for RuB1-Pt(2), (RuB1)(2)-Pt(2), RuB2-Pt(2), and (RuB2)(2)-Pt(2) are estimated as -0.01, 0.00, +0.22, and +0.28 eV, respectively. The considerable difference in the photochemical properties of the B1- and B2-bridged systems were further examined based on the emission decay and transient absorption measurements, which gave results consistent with the above conclusions.  相似文献   

12.
To study the capabilities and limitations of Raman optical activity, (-)-(M)σ-[10]helicene and (-)-(M)σ-[4]helicene serve as scaffold molecules on which new chiral centers are introduced by substitution of hydrogen atoms with other functional groups. These functional groups are deuterium atoms, fluorine atoms, and methyl groups. Multiply deuterated species are compared. Then, results of singly deuterated derivatives are compared against results obtained from singly fluorinated and methylated derivatives. The analysis required the calculation of a total of 2433 Raman optical activity spectra. The method we propose for the comparison of the various Raman optical activity spectra is based on the total intensity of squared difference spectra. This allows a qualitative comparison of pairs of Raman optical activity spectra and the extraction of the pair of most similar Raman optical activity spectra for each group of stereoisomers. Different factors were accounted for, such as the spectral resolution (modeled by line broadening) and the range of vibrational frequencies considered. In the case of σ-[4]helicene all generated stereoisomers in each group can be distinguished from one another by Raman optical activity spectroscopy. For σ-[10]helicene this holds except for the lower one of the two resolutions considered. Here, the group consisting of stereoisomers with five chiral centers contains at least one pair of derivatives whose Raman optical activity spectra cannot be distinguished from one another. This indicates that an increased molecular size has a negative effect on the number of chiral centers which can be distinguished by Raman optical activity spectroscopy. Regarding the different substituents, stereoisomers are the better distinguishable in Raman optical activity spectroscopy, the more distinct the signals of the substituent are from the rest of the spectrum.  相似文献   

13.
New hexamethylated ferrocene derivatives containing thioether moieties (1,1′-bis[(tert-butyl)thio]-2,2′,3,3′,4,4′-hexamethylferrocene ( 3a , b )) or fused S-heteropolycyclic substituents (rac-1-[(1,3-benzodithiol- 2-yliden)methyl]-2,2′,3,3′,4,4′-hexamethylferrocene ( 5 ) and rac-1-[1,2-bis(1,3-benzodithiol-2-yliden)ethyl]-2,2′,3,3′,4,4′-hexamethylferrocene ( 14 )), as well as a series of ferrocene-substituted vinylogous tetrathiafulvalenes (1,1′-bis[1,2-bis(1,3-benzodithiol-2-yliden)ethyl]ferrocene ( 6a ), 1,1′-bis[1-(1,3-benzodithiol-2-yliden)-2-(5,6-dihydro-1,3-dithiolo[4,5-b] [1,4]dithiin-2-yliden)ethyl]ferrocene ( 6b ), [1,2-bis(1,3-benzodithiol-2-yliden)ethyl]ferrocene ( 21a ), [1-(1,3-benzodithiol-2-yliden)-2-(5,6-dihydro-1,3-dithiolo[4,5-b] [1,4]dithiin-2-yliden)ethyl]ferrocene ( 21b ), [1,2-bis(5,6-dihydro-1,3-dithiolo[4,5-b] [1,4]dithiin-2-yliden)ethyl]ferrocene ( 21c ), [1-(5,6-dihydro-1,3-dithiolo[4,5-b] [1,4]dithiin-2-yliden)-2-(1,3-benzodithiol-2-yliden)ethyl]ferrocene ( 21d )) were prepared and fully characterized. Their redox properties show that some of them are easily oxidized and undergo transformation to paramagnetic salts containing bis(maleonitriledithiolato)-metallate(III) anions [M(mnt)2] (M=Ni, Pt; bis[2,3-dimercapto-κS)but-2-enedinitrilato(2)]nickelate (1) or -platinate (1). The derivatives [ 3a ] [Ni(mnt)2] ( 26 ), [ 3a ] [Pt(mnt)2] ( 27 ), [Fe{(η5-C5Me4S)2S}] [Ni(Mnt)2] ( 28 ), [Fe{(η5-C5Me4S)2S}] [Pt(mnt)2] ( 29 ), [ 5 ] [Ni(mnt)2]⋅ClCH2CH2Cl ( 30 ), [ 6a ] [Ni(mnt)2] ( 31 ), [ 6a ] [Ni(mnt)2]⋅ClCH2CH2Cl ( 31a ), [ 6a ] [Pt(mnt)2] [ 32 ), and [ 6b ] [Ni(mnt)2] ( 33 ) were prepared and fully characterized, including by SQUID (superconducting quantum interference device) susceptibility measurements. X-Ray crystal-structural studies of the neutral ferrocene derivatives 6a , b , 21c , d , and 1,1′-bis[1-(1,3-benzodithiol-2-yliden)-2-oxoethyl]ferrocene ( 23 ), as well as of the charge-transfer salts 26 – 28 , 30 , and 31a , are reported. The salts 28 and 30 display both a D+AAD+ structural motif, however, with a different relative arrangement of the [{Ni(mnt)2}2]2− dimers, thus giving rise to different but strong antiferromagnetic couplings. Salt 26 exhibits isolated ferromagnetically coupled [{Ni(mnt)2}2]2− dimers. Salt 27 displays a D+AD+A structural motif in all three space dimensions, and a week ferromagnetic ordering at low temperature. Salt 31a , on the contrary, shows segregated stacks of cations and anions. The cations are connected with each other in two dimensions, and the anions are separated by a 1,2-dichloroethane molecule.  相似文献   

14.
A theoretical study of the chiral distinction between the homochiral and heterochiral dimers of the 1-aza[n]helicenes, with n = 1–7, glued with lithium, sodium, and potassium cations has been carried out by means of DFT calculations up to M05-2x/6-311+G(d) computational level. The electronic characteristic of the isolated helicenes has been explored. The chiral distinction is dependent on the size of the helicene and the cation used with the largest values obtained for the 1-aza[6]helicene bound to lithium cation.  相似文献   

15.
A series of linear-type Co(III)Pt(II)Co(III) trinuclear complexes composed of C(2)-cis(S)-[Co(aet)(2)(en)](+) (aet = 2-aminoethanethiolate) and/or Lambda(D)-trans(N)-[Co(D-pen-N,O,S)(2)](-) (D-pen = D-penicillaminate) were newly prepared, and their chiral behavior, which is markedly different from that of the corresponding Co(III)Pd(II)Co(III) complexes, is reported. The 1:1 reaction of an S-bridged Co(III)Ni(II)Co(III) trinuclear complex, [Ni[Co(aet)(2)(en)](2)]Cl(4), with K(2)[PtCl(4)] in water gave an S-bridged Co(III)Pt(II)Co(III) trinuclear complex, [Pt[Co(aet)(2)(en)](2)]Cl(4) ([1]Cl(4)), while the corresponding 1:2 reaction produced an S-bridged Co(III)Pt(II) dinuclear complex, [PtCl(2)[Co(aet)(2)(en)]]Cl ([2]Cl). Complex [1](4+) formed both racemic (DeltaDelta/LambdaLambda) and meso (DeltaLambda) forms, which were separated and optically resolved by cation-exchange column chromatography. An optically active S-bridged Co(III)Pt(II)Co(III) trinuclear complex having the pseudo LambdaLambda configuration, Lambda(D)Lambda(D)-[Pt[Co(D-pen-N,O,S)(2)](2)](0) (Lambda(D)Lambda(D)-[3]), was also prepared by reacting Lambda(D)-trans(N)-K[Co(D-pen-N,O,S)(2)] with K(2)[PtCl(4)] in a ratio of 2:1 in water. Treatment of the racemic Delta/Lambda-[2]Cl with Lambda(D)-trans(N)-K[Co(D-pen-N,O,S)(2)] in a ratio of 1:1 in water led to the formation of LambdaLambda(D)- and DeltaLambda(D)-[Pt[Co(aet)(2)(en)][Co(D-pen-N,O,S)(2)]](2+) (LambdaLambda(D)- and DeltaLambda(D)-[4](2+)) and DeltaDelta(D)-[Pt[Co(aet)(2)(en)][Co(D-pen-N,S)(2)(H(2)O)(2)]](2+) (DeltaDelta(D)-[4'](2+)), besides trace amounts of Lambda(D)Lambda(D)-[3] and DeltaDelta- and DeltaLambda-[1](4+). These Co(III)Pt(II)Co(III) complexes were characterized on the basis of electronic absorption, CD, and NMR spectra, along with single-crystal X-ray analyses for DeltaDelta/LambdaLambda-[1]Cl(4), DeltaLambda-[1]Cl(4), and DeltaLambda(D)-[4]Cl(2). Crystal data: DeltaDelta/LambdaLambda-[1]Cl(4).6H(2)O, monoclinic, space group C2/c with a = 14.983(3) A, b = 19.857(4) A, c = 12.949(3) A, beta = 113.51(2) degrees, V = 3532(1) A(3), Z = 4; DeltaLambda-[1]Cl(4).3H(2)O, orthorhombic, space group Pbca with a = 14.872(3) A, b = 14.533(3) A, c = 14.347(2) A, V = 3100(1) A(3), Z = 4; DeltaLambda(D)-[4]Cl(2).6H(2)O, monoclinic, space group P2(1) with a = 7.3836(2) A, b = 20.214(1) A, c = 10.622(2) A, beta = 91.45(1) degrees V = 1682.0(4) A(3), Z = 2.  相似文献   

16.
The dynamic behavior in solution of eight mono-hapto?tetraphosphorus transition metal-complexes, trans-[Ru(dppm)(2) (H)(η(1) -P(4) )]BF(4) ([1]BF(4) ), trans-[Ru(dppe)(2) (H)(η(1) -P(4) )]BF(4) ([2]BF(4) ), [CpRu(PPh(3) )(2) (η(1) -P(4) )]PF(6) ([3]PF(6) ), [CpOs(PPh(3) )(2) (η(1) -P(4) )]PF(6) ([4]PF(6) ), [Cp*Ru(PPh(3) )(2) (η(1) -P(4) )]PF(6) ([5]PF(6) ), [Cp*Ru(dppe)(η(1) -P(4) )]PF(6) ([6]PF(6) ), [Cp*Fe(dppe)(η(1) -P(4) )]PF(6) ([7]PF(6) ), [(triphos)Re(CO)(2) (η(1) -P(4) )]OTf ([8]OTf), and of three bimetallic Ru(μ,η(1:2) -P(4) )Pt species [{Ru(dppm)(2) (H)}(μ,η(1:2) -P(4) ){Pt(PPh(3) )(2) }]BF(4) ([1-Pt]BF(4) ), [{Ru(dppe)(2) (H)}(μ,η(1:2) -P(4) ){Pt(PPh(3) )(2) }]BF(4) ([2-Pt]BF(4) ), [{CpRu(PPh(3) )(2) )}(μ,η(1:2) -P(4) ){Pt(PPh(3) )(2) }]BF(4) ([3-Pt]BF(4) ), [dppm=bis(diphenylphosphanyl)methane; dppe=1,2-bis(diphenylphosphanyl)ethane; triphos=1,1,1-tris(diphenylphosphanylmethyl)ethane; Cp=η(5) -C(5) H(5) ; Cp*=η(5) -C(5) Me(5) ] was studied by variable-temperature (VT) NMR and (31) P{(1) H} exchange spectroscopy (EXSY). For most of the mononuclear species, NMR spectroscopy allowed to ascertain that the metal-coordinated P(4) molecule experiences a dynamic process consisting, apart from the free rotation about the M?P(4) axis, in a tumbling movement of the P(4) cage while remaining chemically coordinated to the central metal. EXSY and VT (31) P?NMR experiments showed that also the binuclear complex cations [1-Pt](+) -[3-Pt](+) are subjected to molecular motions featured by the shift of each metal from one P to an adjacent one of the P(4) moiety. The relative mobility of the metal fragments (Ru vs. Pt) was found to depend on the co-ligands of the binuclear complexes. For complexes [2]BF(4) and [3]PF(6) , MAS, (31) P?NMR experiments revealed that the dynamic processes observed in solution (i.e., rotation and tumbling) may take place also in the solid state. The activation parameters for the dynamic processes of complexes 1(+) , 2(+) , 3(+) , 4(+) , 6(+) , 8(+) in solution, as well as the X-ray structures of 2(+) , 3(+) , 5(+) , 6(+) are also reported. The data collected suggest that metal-coordinated P(4) should not be considered as a static ligand in solution and in the solid state.  相似文献   

17.
An original approach to helicene frameworks exploiting atom economic isomerization of appropriate energy-rich aromatic cis,cis-dienetriynes has been developed. The new paradigm provides nonphotochemical syntheses of helicenes based on the easy, convergent, and modular assembly of key cis,cis-dienetriynes and their nickel(0)-catalyzed [2+2+2] cycloisomerization. The potential of the methodology is underlined by the syntheses of the parent [5]helicene (2), 7,8-dibutyl[5]helicene (23), [6]helicene (24), and [7]helicene (25). The approach can be adapted to prepare functionalized helicenes as exemplified by the eight-step synthesis of 7,8-dibutyl-2,3-dimethoxy[6]helicene (34). Density functional theory (DFT) calculations showed that bis[2-((1Z)-1-buten-3-ynyl)phenyl]acetylene (1) and isomeric [5]helicene (2) differ enormously in the Gibbs energy content (DeltaG = -136.6 kcal x mol(-1)) to favor highly the devised intramolecular simultaneous construction of three aromatic rings.  相似文献   

18.
The reaction of [Ni[Co(aet)(2)(pyt)](2)](2+) (aet = 2-aminoethanethiolate, pyt = 2-pyridinethiolate) with [PtCl(4)](2)(-) gave an S-bridged Co(III)Pt(II)Co(III) trinuclear complex composed of two [Co(aet)(2)(pyt)] units, [Pt[Co(aet)(2)(pyt)](2)](2+) ([1](2+)). When a 1:1 mixture of [Ni[Co(aet)(2)(pyt)](2)](2+) and [Ni[Co(aet)(2)(en)](2)](4+) was reacted with [PtCl(4)](2)(-), a mixed-type S-bridged Co(III)Pt(II)Co(III) complex composed of one [Co(aet)(2)(pyt)] and one [Co(aet)(2)(en)](+) units, [Pt[Co(aet)(2)(en)][Co(aet)(2)(pyt)]](3+) ([2](3+)), was produced, together with [1](2+) and [Pt[Co(aet)(2)(en)](2)](4+). The corresponding Co(III)Pt(II)Co(III) trinuclear complexes containing pymt (2-pyrimidinethiolate), [Pt[Co(aet)(2)(pymt)](2)](2+) ([3](2+)) and [Pt[Co(aet)(2)(en)][Co(aet)(2)(pymt)]](3+) ([4](3+)), were also obtained by similar reactions, using [Ni[Co(aet)(2)(pymt)](2)](2+) instead of [Ni[Co(aet)(2)(pyt)](2)](2+). While [Pt[Co(aet)(2)(en)](2)](4+) formed both the deltalambda (meso) and deltadelta/lambdalambda (racemic) forms in a ratio of ca. 1:1, the preferential formation of the deltadelta/lambdalambda form was observed for [1](2+) (ca. deltalambda:deltadelta/lambdalambda = 1:3) and [2](3+) (ca. delta(en)lambda(pyt)/lambda(en)delta(pyt):deltadelta/lambdalambda = 1:2). Furthermore, [3](2+) and [4](3+) predominantly formed the deltadelta/lambdalambda form. These results indicate that the homochiral selectivity for the S-bridged Co(III)Pt(II)Co(III) trinuclear complexes composed of two octahedral [Co(aet)(2)(L)](0 or +) units is enhanced in the order L = en < pyt < pymt. The isomers produced were separated and optically resolved, and the crystal structures of the meso-type deltalambda-[1]Cl(2).4H(2)O and the spontaneously resolved deltadelta-[4](ClO(4))(3).H(2)O were determined by X-ray analyses. In deltalambda-[1](2+), the delta and Lambda configurational mer(S).trans(N(aet))-[Co(aet)(2)(pyt)] units are linked by a square-planar Pt(II) ion through four aet S atoms to form a linear-type S-bridged trinuclear structure. In deltadelta-[4](3+), a similar linear-type trinuclear structure is constructed from the delta-mer(S).trans(N(aet))-[Co(aet)(2)(pymt)] and delta-C(2)-cis(S)-[Co(aet)(2)(en)](+) units that are bound by a Pt(II) ion with a slightly distorted square-planar geometry through four aet S atoms.  相似文献   

19.
Four platinum(II) cationic complexes were prepared with the mer-coordinating tridentate ligands 2,6-bis(N-pyrazolyl)pyridine (bpp) and 2,6-bis(3,5-dimethyl-N-pyrazolyl)pyridine (bdmpp): [Pt(bpp)Cl]Cl.H(2)O; [Pt(bdmpp)Cl]Cl.H(2)O; [Pt(bpp)(Ph)](PF(6)); [Pt(bdmpp)(Ph)](PF(6)). The complexes were characterized by (1)H NMR spectroscopy, elemental analysis, and mass spectrometry, and the structures of the bpp derivatives were determined by X-ray crystallography. [Pt(bpp)Cl]Cl.2H(2)O: monoclinic, P2(1)/n, a = 11.3218(5) A, b = 6.7716(3) A, c = 20.6501(6) A, beta = 105.883(2) degrees, V = 1522.73(11) A(3), Z = 4. The square planar cations stack in a head-to-tail fashion to form a linear chain structure with alternating Pt...Pt distances of 3.39 and 3.41 A. [Pt(bpp)(Ph)](PF(6)).CH(3)CN: triclinic, P, a = 8.3620(3) A, b = 10.7185(4) A, c = 13.4273(5) A, alpha = 96.057(1) degrees, beta = 104.175(1) degrees, gamma = 110.046(1) degrees, V = 1072.16(7) A(3), Z = 2. Cyclic voltammograms indicate all four complexes undergo irreversible reductions between -1.0 and -1.3 V vs Ag/AgCl (0.1 M TBAPF(6)/CH(3)CN), attributable to ligand- and/or metal-centered processes. By comparison to related 2,2':6',2' '-terpyridine complexes, the electrochemical and UV-visible absorption data are consistent with bpp being both a weaker sigma-donor and pi-acceptor than terpyridine. Solid samples of [Pt(bpp)(Ph)](PF(6)) at 77 K exhibit a remarkably intense, narrow emission centered at 655 nm, whereas the other three complexes exhibit only very weak emission.  相似文献   

20.
Metal Complexes of Biologically Important Ligands. CIII. [1] Palladium(II), Platinum(II), Ruthenium(II), Rhodium(III), and Iridium(III) Complexes of Desoxyfructosazine The reactions of the pyrazine derivative desoxyfructosazin(pz) with K2PtCl4 and with the chlorobridged [M(PR3)Cl2]2 (M = Pd, Pt), [(η5-C5Me5)MCl2]2 and [(η6-p-Cymol)RuCl2]2 give the watersoluble complexes cis-Cl2Pt(pz)2, (R3P)(Cl)M(pz)M(Cl)(PR3) (M = Pd, Pt), (η5-C5Me5)(Cl)2M(pz)M(Cl)25-C5Me5) (M = Rh, Ir), (η6-p-Cymol)(Cl2)Ru(pz)Ru(Cl)26-p-Cymol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号