首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-halamine silane syntheses and coatings of cotton fabrics as siloxanes were addressed for a series of silanes. The coated fabrics were chlorinated by exposure to dilute sodium hypochlorite with a range of chlorine loadings from 0.20% to 0.26%. Two types of N–Cl moieties were involved in the N-halamine siloxanes, amine and amide. The siloxane-coated cotton swatches were very effective in inactivating Escherichia coli O157:H7 and Staphylococcus aureus, each in 10 min contact time. The N–Cl bond and compound stabilities under UV irradiation and ambient light exposure were also investigated. Both UV and laboratory light stability tests show that most of the chlorine on cotton coated with 3-(3-triethoxysilylpropyl)-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decane-2,4-dione could be regenerated after irradiation, while most of the lost chlorine from 5,5-dimethyl-3-(3′-triethoxysilylpropyl)hydantoin and 4-[3-triethoxysilylpropoxyl]-2,2,6,6-tetramethylpiperidine could not be recovered upon rechlorination.  相似文献   

2.
Novel dyes based on a benzothioxantheneimide chromophore covalently linked with a sterically hindered amine (HAS) were prepared and their light stability was tested in polymer matrices. The following dyes: 2-(2,2,6,6-tetramethyl-4-piperidyl)-thioxantheno[2,1,9-dej]isoquinoline-1,3-dione (BTXINH) and N-alkoxy derivative 2-(1-(1′-phenylethoxy)-2,2,6,6-tetramethyl-4-piperidyl)-thioxantheno[2,1,9-dej] isoquinoline-1,3-dione (BTXINOR) were prepared. For comparison the parent dye without HAS structural unit benzothioxanthene-3,4-dicarboxylic anhydride and the N-alkyl derivative 2-(1-dodecyl)-thioxantheno[2,1,9-dej]isoquinoline-1,3-dione (BTXID) and the stable nitroxyl radical 2-(1-oxo-2,2,6,6-tetramethyl-4-piperidyl)-thioxantheno[2,1,9-dej]isoquinoline-1,3-dione (BTXINO) were also tested. Their spectral properties, absorption and fluorescence have been examined in polystyrene (PS), poly(methyl methacrylate) (PMMA), poly(vinyl chloride) (PVC) and in isotactic polypropylene (PP). The light stability of these dyes and model compounds were examined in thin polymer films. The photolysis rate was monitored by UV spectroscopy and for all additives under study it was in the range 10−4–10−3 h−1. The rate of decomposition was the lowest for the parent amine BTXINH in PMMA, PS and PVC. The rate constants of photolysis are about 10 times higher for all adducts and the lowest rate of decomposition in PP matrix was observed for BTXINOR. A distinct stabilization effect of HAS structural unit on the dye decomposition was not observed. The light stability of the dyes was more influenced by the selection of the polymer. The photolysis proceeds rather fast in PP, and moderately in PS and PVC compared to PMMA.  相似文献   

3.
The outstanding advantages of N-halamine materials over other antimicrobial materials are their durable and rechargeable antimicrobial properties, as well as their efficacies in inactivating a broad spectrum of pathogens. Theoretically, the oxidative chlorine of antimicrobial cotton coated with N-halamine hydantoin diol can be restored upon loss of its biocidal efficacy after exposure to ultraviolet light. In this work nano-titania particles were added into the coating solutions containing N-halamine diol and 1,2,3,4-butanetetracarboxylic acid (BTCA), and the coatings were applied to produce antimicrobial cellulose with improved UV stability. The treated cotton fabrics were characterized by FT-IR, SEM, XRD, and XPS. The effects of the coatings on tensile strength and wrinkle recovery angle were investigated. Biocidal efficacies of fabrics coated with hydantoin diol and diol/TiO2 against Staphylococcus aureus (ATCC 6538) and Escherichia coli O157:H7 (ATCC 43895) were determined using a modified AATCC 100-1999 method and showed excellent antimicrobial properties against these two bacterial species within a brief contact times. It was found that the addition of Nano-TiO2 in the antimicrobial coatings, especially rutile titanium dioxide, could improve the UV light stability of the chlorinated fabrics coated with hydantoin diol significantly. The UV light stability of N-halamine coatings were enhanced with increasing amounts of rutile TiO2.  相似文献   

4.
Three different trademarks of a hindered amine stabilizer with the IUPAC name poly((6-((1,1,3,3-tetramethylbutyl)-amino)-1,3,5-triazine-2,4-d iyl)(2,2,6,6-tetramethyl-4-piperidyl)imino)-1,6-hexanediyl(( 2,2 ,6,6-tetramethyl-4-piperidyl)imino)), have been analyzed and compared to each other by the use of non-aqueous packed capillary temperature-programmed liquid chromatography and light scattering detection. The analysis by this method has shown that the products contained almost 40 different homologues and other components. This is in contrast to what has been assumed earlier based on results achieved with size exclusion chromatography. The method demonstrated significant differences between the products from different manufacturers.  相似文献   

5.
Three heterocyclic N-halamine structures containing amine, amide, or both functional groups were immobilized onto cotton fabric through epoxide tethering. The coatings were rendered biocidal upon exposure to dilute household bleach solution. The coatings exhibited superior biocidal functionality with complete inactivation of about 6 logs of Staphylococcus aureus and Escherichia coli O157:H7 within 2–10 min contact time depending on the structure. Moreover, the coatings were quite stable against repeated laundering so that recharging was not even necessary after 50 washing cycles. Stability of the coatings against ultraviolet light exposure was studied with a comparison of the amide- and amine-containing N-halamines.  相似文献   

6.
Bioinert polyelectrolyte multilayers comprised of poly(acrylic acid) and polyacrylamide were deposited on colloidal particles (1.7 microm in diameter) at low pH conditions by layer-by-layer assembly using hydrogen-bonding interactions. The multilayer films were coated uniformly on the colloidal particles without causing any flocculation of the colloids, and the deposited films were subsequently cross-linked by a single treatment of a carbodiimide aqueous solution. The lightly cross-linked multilayer films show excellent stability at physiological conditions (pH 7.4, phosphate-buffered saline), whereas untreated multilayer films dissolved. The multilayer-coated surfaces, both on flat substrates and on colloidal particles, exhibit excellent resistance toward mammalian cell adhesion. With this new solution-based cross-linking method, bioinert H-bonded multilayer coatings offer potential for biomedical applications.  相似文献   

7.
UV-protective coatings on live bacterial cells were created from the assembly of cationic and UV-absorbing anionic polyelectrolytes using layer-by-layer (LbL) methodology. A cationic polymer (polyallylamine) and three different anionic polymers with varying absorbance in the UV range (poly(vinyl sulfate), poly(4-styrenesulfonic acid), and humic acid) were used to encapsulate Escherichia coli cells with two different green fluorescent protein (GFP) expression systems: constitutive expression of a UV-excitable GFP (GFPuv) and regulated expression of the intensely fluorescent GFP from amphioxus (GFPa1) through a theophylline-inducible riboswitch. Riboswitches activate protein expression after specific ligand-RNA binding events. Hence, they operate as a cellular biosensor that will activate reporter protein synthesis after exposure to a ligand target. E. coli cells coated with UV-absorbing polymers demonstrated enhanced protection of GFP stability, metabolic activity, and viability after prolonged exposure to radiation from a germicidal lamp. The results show the effectiveness of LbL coatings to provide UV protection to living cells for biotechnological applications.  相似文献   

8.
In order to elaborate alternate layer-by-layer assembly as a means to prepare ultrathin films, details of conventional polyion assemblies have been quantitatively analyzed by quartz crystal microbalance (QCM) technique with the aid of scanning electron microscopy (SEM) and atomic force microscopy (AFM). The alternate adsorption of poly(styrenesulfonate) (PSS) and poly(allylamine) (PAM) onto oppositely-charged surfaces displayed the pseudo first-order kinetics and was saturated within 10–20 min at pH 3 and 22°C. It was revealed that drying at every step increased the thickness of adsorbed films due to enhanced surface roughness of the films. Therefore, frequent drying is not profitable for preparing films in a good quality. Non-contact AFM observation revealed that drying of the film with nitrogen stream, forced polymer chains to align to one direction with increasing surface roughness. In contrast, water washing between the consecutive adsorptions was effective for successful alternate adsorption. About 10% of an adsorbed polyion layer was removed by 5-min water washing probably due to removal of the loosely-attached materials.  相似文献   

9.
Bis (2,2,6,6-tetramethyl-4-piperidyl) maleate (BPM) is a kind of intermediate for newer hindered amine light stabilizer, being of high value for study and application. However, the report about the analysis of BPM and its reaction solution has not been seen till now. In the synthesis reaction solution of BPM, besides great quantity of solvent,xylene mixture, ethyl benzene, there are a little unreacted dimethyl maleate (DMM), 2,2,6,6,-tetramethyl-4-piperdinol (TMP) and BPM. BPM is weekly alkaline polyfunctional organic compound, dissociating easily in aqueous solution. When analyzing it with common liquid chromatography,some problems such as trailing peaks, asymmetric peaks, low resolution, unstable retention time will appear. In this paper,the ion suppression chromatography (ISC) technique was successfully used in BPM synthesis process to separate and analyze,quantitatively the raw material, reaction solution and product. The experimental result is of a certain value in guiding the study on BPM synthesis.  相似文献   

10.
Two N‐halamine precursors, 1‐glycidyl‐s‐triazine‐2,4,6‐trione and 1‐(2,3‐dihydroxypropyl)‐s‐triazine‐2,4,6‐trione, were synthesized and tethered onto cotton fabrics via the crosslinking agent 1,2,3,4‐butanetetracarboxylic acid. The modified samples were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). The modified fabrics were rendered biocidal activities upon exposure to dilute hypochlorite solutions. The chlorinated cotton swatches were challenged with Staphylococcus aureus (ATCC 6538) and Escherichia coli O157:H7 (ATCC 43895) and exhibited excellent biocidal efficacy. The stability and rechargeability of the modified samples during washing and ultraviolet irradiation were also investigated. In vitro cell cytocompatibility studies demonstrated that the antibacterial cotton has good biocompatibility. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The influence of high-k dielectric bioceramics with poly(amino acid) multilayer coatings on the adhesion behavior of Escherichia coli (E. coli) was studied by evaluating the density of bacteria coverage on the surfaces of these materials. A biofilm forming K-12 strain (PHL628), a wild-type strain (JM109), and an engineered strain (XL1-Blue) of E. coli were examined for their adherence to zirconium oxide (ZrO(2)) and tantalum oxide (Ta(2)O(5)) surfaces functionalized with single and multiple layers of poly(amino acid) polyelectrolytes made by the layer-by-layer (LBL) deposition. Two poly(amino acids), poly(l-arginine) (PARG) and poly(l-aspartic acid) (PASP), were chosen for the functionalization schemes. All three strains were found to grow and preferentially adhere to bare bioceramic film surfaces over bare glass slides. The bioceramic and glass surfaces functionalized with positively charged poly(amino acid) top layers were observed to enhance the adhesion of these bacteria by up to 4-fold in terms of bacteria surface coverage. Minimal bacteria coverage was detected on surfaces functionalized with negatively charged poly(amino acid) top layers. The effect of different poly(amino acid) coatings to promote or minimize bacterial adhesion was observed to be drastically enhanced with the bioceramic substrates than with glass. Such observed enhancements were postulated to be attributed to the formation of higher density of poly(amino acids) coatings enabled by the high dielectric strength (k) of these bioceramics. The multilayer poly(amino acid) functionalization scheme was successfully applied to utilize this finding for micropatterning E. coli on bioceramic thin films.  相似文献   

12.
《Mendeleev Communications》2023,33(4):562-564
Aqueous solutions of poly(diallyldimethylammonium chloride) and its electrostatic complexes with sodium polyacrylate were deposited onto glass surfaces. Upon successive washing cycles, they formed thin stable coatings that exhibited antimicrobial activity towards gram-positive and gram-negative bacteria. The obtained results are valuable for the development of antibacterial coatings.  相似文献   

13.
塑料表面载银微凝胶层层组装膜的制备及抗菌活性   总被引:1,自引:0,他引:1  
以载银聚烯丙基胺盐酸盐-葡聚糖微凝胶与聚苯乙烯磺酸钠为构筑基元,利用层层组装技术制备了一种可直接沉积在疏水的塑料基底表面的载银抗菌微凝胶膜. 研究结果表明,该载银抗菌微凝胶膜具有很好的抗菌能力,并且其抗菌活性可以通过控制载银微凝胶膜的组装层数方便地进行调控. 这种制备在塑料表面的载银抗菌微凝胶膜具有良好的稳定性和基底粘附力,能够保障其长效抗菌的实现.  相似文献   

14.
Contact antimicrobial coatings with poly(alkylammonium) compositions have been a subject of increasing interest in part because of the contribution of biocide release coatings to antibiotic resistance. Herein, a concept for antimicrobial coatings is developed on the basis of the thermodynamically driven surface concentration of soft block side chains. The concept incorporates structural and compositional guidance from naturally occurring antimicrobial proteins and achieves compositional economy via a polymer-surface modifier (PSM). To implement this concept, polyurethanes were prepared having random copolymer 1,3-propylene oxide soft blocks with alkylammonium and either trifluoroethoxy or PEGlyted side chains. Six carbon (C6) and twelve carbon (C12) alkylammonium chain lengths were used. The PSMs were first tested as 100% coatings and were highly effective against aerosol challenges of Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli). To evaluate the surface concentration, solutions containing 2 wt % PSM with a conventional polyurethane were evaporatively coated onto glass slides. These 2% PSM coatings were tested against aerosol challenges of Gram-negative (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria (107 CFU/mL/30 min). A copolymer soft block containing trifluorethoxy (89 mol %) and C-12 alkylammonium (11 mol %) side chains gave the highest biocidal effectiveness in 30 min: 2 wt %, Gram(+/-) bacteria, 100% kill, and 3.6-4.4 log reduction. A zone of inhibition test showed no biocide release for PSMs and PSM-modified compositions. Characteristics that contribute to concept validation include good hard block/soft block phase separation, a cation/co-repeat group ratio mimicking natural biocidal proteins, a semifluorinated "chaperone" aiding in alkylammonium surface concentration, and a low Tg for the alkylammonium soft block.  相似文献   

15.
Membranes with designed surface and filtration properties were prepared by the adsorption of polyelectrolyte multilayer systems on membrane surfaces using the layer-by-layer electrostatic self assembly (ESA) technique. Microfiltration membranes with a first polyelectrolyte layer grafted onto the surface showed excellent stability during filtration process. Although a twofold higher permeate flux was observed for a three-layer polyelectrolyte complex membrane compared to a just grafted one the protein retention did not change remarkably. Additionally, a reduced protein adsorption was detected for repulsive electrostatic forces between the substrate and the protein under applied conditions. Pervaporation membranes with an anionically functionalized polyamide-6 support or Nafion®-117 support and a dense separating layer consisting of poly(acrylic acid) and poly(ethylenimine) were prepared. Those membranes were used to separate aqueous organic mixtures. Six double layers were sufficient to obtain membranes with high water permselectivity. Membranes with similar properties but a lower number of deposited layers were obtained, when the adsorption process was carried out at 80°C.  相似文献   

16.
The electrostatic adsorption onto charged surfaces of comb copolymers comprising a polyelectrolyte backbone and pendent PEG side chains, such as poly(l-lysine)-g-poly(ethylene glycol) (PLL-g-PEG), has in previous studies provided protein-repellent thin coatings, particularly on metal oxide surfaces. A drawback of this approach is, however, the instability of such adsorbed layers under extreme pH values or high ionic strength. We have overcome this limitation in the present study by covalently immobilizing PLL-g-PEG copolymers onto aldehyde plasma-modified substrates. Silicon wafers, optical waveguide chips, and perfluorinated ethylene-co-propylene (FEP) polymer substrates were first coated with a thin plasma polymer layer using a propionaldehyde plasma, followed by covalent immobilization of PLL-g-PEG via reductive amination between amine groups of the PLL backbone with aldehyde groups on the plasma-deposited interlayer. The stability in high salt media and the protein resistance of different molecular architectures of immobilized PLL-g-PEG layers were quantitatively investigated by XPS, an optical waveguide technique (OWLS), and ToF-SIMS. The adsorption of bovine serum albumin was found to be below the detection limit (<2 ng/cm(2)), as for electrostatically adsorbed PLL-g-PEG layers. However, after 24 h of exposure of covalently immobilized layers of PLL-g-PEG to high ionic strength buffer (2400 mM NaCl), no significant change in the protein resistance was observed, whereas under the same conditions electrostatically adsorbed PLL-g-PEG coatings lost their protein resistance. Moreover, covalent immobilization via an aldehyde plasma interlayer enabled the application of PLL-g-PEG layers onto substrates such as FEP onto which electrostatic binding is not possible. These findings create a generic platform for the covalent immobilization of PLL-g-PEG onto a wide variety of substrates.  相似文献   

17.
A new strategy for preparing antimicrobial surfaces by a simple dip-coating procedure is reported. Amphiphilic polycations with different mole ratios of monomers containing dodecyl quaternary ammonium, methoxyethyl, and catechol groups were synthesized by free-radical polymerization. The polymer coatings were prepared by immersing glass slides into a polymer solution and subsequent drying and heating. The quaternary ammonium side chains endow the coatings with potent antibacterial activity, the methoxyethyl side chains enable tuning the hydrophobic/hydrophilic balance, and the catachol groups promote immobilization of the polymers into films. The polymer-coated surfaces displayed bactericidal activity against Escherichia coli and Staphylococcus aureus in a dynamic contact assay and prevented the accumulation of viable E. coli, S. aureus, and Acinetobacter baumannii for up to 96 h. Atomic force microscopy (AFM) images of coating surfaces indicated that the surfaces exhibit virtually the same smoothness for all polymers except the most hydrophobic. The hydrophobic polymer without methoxyethyl side chains showed clear structuring into polymer domains, causing high surface roughness. Sum-frequency generation (SFG) vibrational spectroscopy characterization of the surface structures demonstrated that the dodecyl chains are predominantly localized at the surface-air interface of the coatings. SFG also showed that the phenyl groups of the catechols are oriented on the substrate surface. These results support our hypothesis that the adhesive or cross-linking functionality of catechol groups discourages polymer leaching, allowing the tuning of the amphiphilic balance by incorporating hydrophilic components into the polymer chains to gain potent biocidal activity.  相似文献   

18.
The infection induced by implantation of biomedical materials may result from the biofilm formation after bacteria attachment.Hence, the antibiofilm surface coating represents a novel technique to improve the antibacterial activity of biomedical materials. The traditional antibiofilm surface coatings exhibited some disadvantages and provided a limited service life. In this work, we used polyethyleneimine grafted 3-maleimidopropionic acid(PEIM) and poly(acrylic acid) grafted 2-furfurylamine(PAAF) to achieve robust and self-healable crosslinked multilayer coatings, employing Layer-by-Layer(LbL) self-assembly technique and Diels-Alder reaction. Then, thiol-terminated poly((3-acrylamidopropyl)trimethylammonium chloride)(PAMPTMA-SH) was grafted onto the crosslinked multilayer coating by thiol-ene click reaction to form a novel multilayer coating(PEIM/PAAF)_(10)-PAMPTMA. We found that this coating showed robust and self-healable activity, and significantly inhibited the bacterial growth and biofilm formation after infection with Escherichia coli(E. coli) and Staphylococcus aureus(S. aureus) by in vitro and in vivo assays for 120 h. In addition, the multilayer coating did not induce significant hemolysis or affect the cell viability of red blood cells. In vivo studies also showed that(PEIM/PAAF)_(10)-PAMPTMA coating efficiently blocked the infiltration of inflammatory cells and gene expression in the mouse skin challenged with E. coli or S. aureus. Taken together, these results showed that the prepared multilayer coating exhibited strong antibiofilm activity and provided a new strategy for the application of highly efficient antibiofilm surface coating of biomedical materials.  相似文献   

19.
Polyoctenamer reacts with singlet oxygen to produce polymeric pendant hydroperoxide groups. Anthracene was used as a sensitizer for production of singlet oxygen under 365 nm irradiation. Remarkable differences were observed when the reaction was performed in the solid state or in the solution. Hydroperoxidation in the solution was much slower than in the film, and only pendant hydroperoxides were produced. Conversely, two processes take place in the film. One is the “ene” reaction of singlet oxygen with double bonds producing hydroperoxides as in the solution; the second one is a radical process producing both carbonyl products and additional hydroperoxides. This process went on after anthracene was completly consumed. Irradiation (λ > 300 nm) of hydroperoxidized polyoctenamer solution in the presence of monomers (2,2,6,6-tetramethyl or 1,2,2,6,6-pentamethyl-4-piperidyl acrylate) or stable nitroxyl radicals (stearoyloxy-2,2,6,6-tetramethyl-4-piperidyl-N-oxyl or TEMPO) grafted these monomers or stable radicals onto the polyoctenamer. Light stabilizing efficiency of grafted and low molecular additives was tested in polyoctenamer. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2599–2605, 1997  相似文献   

20.
采用层层自组装技术与光化学修饰方法相结合在聚氨酯材料表面固定生物多糖衍生物,首先合成具有光反应活性的叠氮壳聚糖,再在聚氨酯基材表面进行叠氮壳聚糖与香菇多糖硫酸酯的层层自组装,然后通过光化学反应对自组装多层膜修饰层进行交联,制备得到生物多糖衍生物层层自组装与光化学表面修饰的聚氨酯材料.通过红外光谱、X射线光电子能谱、水接触角测量仪、抗菌活性测试、溶血试验和血小板黏附测试等方法对被修饰聚氨酯材料的表面性能和生物性能进行了分析,测试结果表明修饰后的聚氨酯材料表面的亲水性和血液相容性得到改善,并且被修饰材料对大肠杆菌具有良好的抑制效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号