首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyze the jamming transition that occurs as a function of increasing packing density in a disordered two-dimensional assembly of disks at zero temperature for "Point J" of the recently proposed jamming phase diagram. We measure the total number of moving disks and the transverse length of the moving region, and find a power law divergence as the packing density increases toward a critical jamming density. This provides evidence that the T=0 jamming transition as a function of packing density is a second order phase transition. Additionally, we find evidence for multiscaling, indicating the importance of long tails in the velocity fluctuations.  相似文献   

2.
We calculate the distribution of interparticle normal forces P(F) near the glass and jamming transitions in model supercooled liquids and foams, respectively. P(F) develops a peak that appears near the glass or jamming transitions, whose height increases with decreasing temperature, decreasing shear stress and increasing packing density. A similar shape of P(F) was observed in experiments on static granular packings. We propose that the appearance of this peak signals the development of a yield stress. The sensitivity of the peak to temperature, shear stress, and density lends credence to the recently proposed generalized jamming phase diagram.  相似文献   

3.
We have studied metastability effects pertaining to the peak effect (PE) in critical current density (J c) via isofield scans in AC susceptibility measurements in a weakly pinned single crystal of Yb3Rh4Sn13 (T c(0) ≈ 7.6 K). The order-disorder transition in this specimen proceeds in a multi-step manner. The phase coexistence regime between the onset temperature of the PE and the spinodal temperature (where metastability effects cease) seems to comprise two parts, where ordered and disordered regions dominate the bulk behavior, respectively. The PE line in the vortex phase diagram is argued to terminate at the low field end at a critical point in the elastic (Bragg) glass phase.  相似文献   

4.
We discuss the concept of a glass transition line in the temperature-shear-stress plane in the context of recent simulation data for a metallic melt and dense-packed granular systems. Analyzing these data within a schematic model of the mode-coupling theory for dense glass formers under shear, values for the critical dynamic yield stress (the stress resulting in the limit of arbitrarily slow shear, at the glass transition) are estimated. We discuss two possible scenarios, that of a continuous rise in the dynamic yield stress at the transition, and that of a discontinuous transition, and discuss the data range that needs to be covered to decide between the two cases. A connection is made to the two commonly drawn versions of the jamming diagram, one convex and one concave regarding to the shape of the solid region.  相似文献   

5.
We consider an Ising competitive model defined over a triangular Husimi tree where loops, responsible for an explicit frustration, are even allowed. We first analyze the phase diagram of the model with fixed couplings in which a “gas of noninteracting dimers (or spin liquid) — ferro or antiferromagnetic ordered state” zero temperature transition is recognized in the frustrated regions. Then we introduce the disorder for studying the spin glass version of the model: the triangular ±J model. We find out that, for any finite value of the averaged couplings, the model exhibits always a finite temperature phase transition even in the frustrated regions, where the transition turns out to be a glassy transition. The analysis of the random model is done by applying a recently proposed method which allows us to derive the critical surface of a random model through a mapping with a corresponding nonrandom model.  相似文献   

6.
The thermodynamic properties of the quark-gluon plasma (QGP), as well as its phase diagram, are calculated as a function of baryon density (chemical potential) and temperature. The QGP is assumed to be composed of the light quarks only, i.e., the up and down quarks, which interact weakly, and the gluons which are treated as they are free. The interaction between quarks is considered in the framework of the one gluon exchange model which is obtained from the Fermi liquid picture. The bag model is used, with fixed bag pressure (B)for the nonperturbative part, and the quantum chromodynamics (QCD) coupling is assumed to be constant, i.e., with no dependence on the temperature or the baryon density. The effect of weakly interacting quarks on the QGP phase diagram are shown and discussed. It is demonstrated that the one-gluon exchange interaction for the massless quarks has considerable effect on the QGP phase diagram and it causes the system to reach to the confined phase at the smaller baryon densities and temperatures. The pressure of excluded volume hadron gas model is also used to find the transition phase diagram. Our results depend on the values of bag pressure and the QCD coupling constant. The latter does not have a dramatic effect on our calculations. Finally, we compare our results with the thermodynamic properties of strange quark matter and the lattice QCD prediction for the QGP transition critical temperature.  相似文献   

7.
We study the rheological properties of a granular suspension subject to constant shear stress by constant volume molecular dynamics simulations. We derive the system "flow diagram" in the volume fraction or stress plane (phi, F): at low phi the flow is disordered, with the viscosity obeying a Bagnold-like scaling only at small F and diverging as the jamming point is approached; if the shear stress is strong enough, at higher phi an ordered flow regime is found, the order-disorder transition being marked by a sharp drop of the viscosity. A broad jamming region is also observed where, in analogy with the glassy region of thermal systems, slow dynamics followed by kinetic arrest occurs when the ordering transition is prevented.  相似文献   

8.
Dielectric properties of porous glass nanocomposites with TGS crystals embedded into six porous matrices with average pore size from 5 to 312 nm were investigated in the temperature range from 280 to 380 K at selected frequencies. The results are discussed based on the effect of the particle size on the phase transition temperature of TGS nanocomposites. Temperature–size phase diagram of TGS composites was derived. Non-monotonic character of the temperature-driven phase transition (T p) with the decreasing particle size was determined. The nature of the T p variation can be ascribed to the size-effect theoretically predicted by Zhong et al. (Phys Rev B 50:698–703, 1994).  相似文献   

9.
Bayram Deviren  Mehmet Erta? 《Physica A》2010,389(10):2036-2047
An effective-field theory with correlations has been used to study critical behaviors of a mixed spin-1 and spin-2 Ising system on a honeycomb and square lattices in the absence and presence of a longitudinal magnetic field. The ground-state phase diagram of the model is obtained in the longitudinal magnetic field (h) and a single-ion potential or crystal-field interaction (Δ) plane. The thermal behavior of the sublattice magnetizations of the system are investigated to characterize the nature of (continuous and discontinuous) of the phase transitions and obtain the phase transition temperature. The phase diagrams are presented in the (Δ/|J|, kBT/|J|) plane. The susceptibility, internal energy and specific heat of the system are numerically examined and some interesting phenomena in these quantities are found due to the absence and presence of the applied longitudinal magnetic field. Moreover, the system undergoes second- and first-order phase transition; hence, the system gives a tricritical point. The system also exhibits reentrant behavior.  相似文献   

10.
《Physica A》1996,231(4):673-686
The equilibrium properties of the spin-1 Ising system Hamiltonian with arbitrary bilinear (J), biquadratic (K) and odd (L), which is also called dipolar-quadrupolar, interactions is studied for zero magnetic field in the lowest approximation of the cluster variation method. The odd interaction is combined with the bilinear (dipolar) and biquadratic (quadrupolar) exchange interactions by the geometric mean. In this system, phase transitions depend on the ratio of the coupling parameters, α = J/K; therefore, the dependence of the nature of the phase transition on α is investigated extensively and it is found that for α ⩽ 1 and α ⩾ 2000 a second-order phase transition occurs, and for 1 < α < 2000 a first-order phase transition occurs. The critical temperatures in the case of a second-order phase transition and the upper and lower limits of stability temperature in the case of a first-order phase transition are obtained for different values of α calculated using the Hessian determinant. The first-order phase transition temperatures are found by using the free energy values while increasing and decreasing the temperature. Besides the stable branches of the order parameters, we establish also the metastable and unstable parts of these curves and the thermal variations of these solutions as a function of the reduced temperature are investigated. The unstable solutions for the first-order phase transitions are obtained by displaying the free energy surfaces in the form of a contour map. Results are compared with the spin-1 Ising system Hamiltonian with the bilinear and biquadratic interactions and it is found that the odd interaction greatly influences the phase transitions.  相似文献   

11.
In a magnetic field parallel to the magnetization axis of an antiferromagnetic Fe Br2 single crystal, a caracteristic metamagnetic behaviour is observed. The transition from an antiferromagnetic phase to a paramagnetic phase is studied by help of magnetization measurements in a steady field (H < 60 kOe). The measurement precision has allowed a detailed study of the magnetization isotherms, caracteristic of a first order magnetization phase transition (T < Tc = 4, 7 K) and of a second order phase transition (Tc < T < TN = 14, 2 K).We have observed an original phase diagram. In a certain temperature and field range, the ordered phase is stable on the high temperature side of the transition point. Some theoretical studies in an Ising model, or in the hypothesis of a strong magnetoelastic coupling forecast the existence of such a magnetic phase diagram.At present, we proceed to a theoretical study, in a molecular field approximation, of the magnetic phase diagram of compounds similar to Fe Br2 where we take into account the relative values of parameters J1, J2 and D associated with ferromagnetic and antiferromagnetic interactions and crystalline anisotropy.  相似文献   

12.
We restudy the phase diagram of the 2D-Ising model with competing interactions J1 on nearest neighbour and J2 on next-nearest neighbour bonds via Monte-Carlo simulations. We present the finite temperature phase diagram and introduce computational methods which allow us to calculate transition temperatures close to the criticalpoint at J2 = J1/2. Further on we investigate the character of the different phase boundariesand find that the transition is weakly first order formoderate J2 > J1/2.  相似文献   

13.
The effects of the phase transition in Hg2(Br,I)2 crystals have been investigated over a wide range of temperatures by the Raman scattering spectroscopy and X-ray diffraction analysis. The overtones (at the X point of the Brillouin zone boundary) and the fundamental tones (at the center of Brillouin zone) of soft modes are found in the Raman spectra of these crystals and studied in detail. The density of one-phonon states of the soft TA branch manifests itself in the Raman spectra of mixed crystals. The potentialities of the soft-mode spectroscopy are realized in full measure. Analysis of the ratio between intensities of overtones and fundamental tones of the soft modes has demonstrated the applicability of the Landau phenomenological theory of phase transitions. The orthorhombic splitting of the reflections corresponding to the basal plane is revealed in the X-ray diffraction patterns and thoroughly explored. The temperature dependences of the isotropic and shear spontaneous strains are obtained. It is shown that the shear spontaneous strain plays a decisive role. The critical indices are determined and the model of the improper ferroelastic phase transition D 4h 17 D 2h 17 in the vicinity of the tricritical point is corroborated.  相似文献   

14.
15.
Specific heat of tin nanoparticles, which are embedded in porous glass with average pore size ~7 nm, has been investigated in the low-temperature region in magnetic fields up to 2 T. The temperatures of the transition into the superconducting state in various magnetic fields have been determined for tin nanostructured in porous glass. The H c -T c phase diagram has been constructed. The upper critical field has been evaluated and the electronic specific heat coefficient and the Debye temperature have been refined. These results have been discussed within the structural model of tin nanoparticles in porous glass.  相似文献   

16.
Polycrystalline Nd0.84K0.12MnO3 was prepared in single phase form with Pbnm space group. The magnetic properties are studied from magnetization, linear and non-linear susceptibility, and thermoremanent magnetization measurements. The sample exhibits paramagnetic to ferromagnetic transition followed by low temperature spin glass like transition. From frequency variation of ac susceptibility measurements, the spin glass transition temperature is found to be 97.6±0.1 K with critical exponents =1.13±0.06. The critical exponent γ corresponding to spin glass transition has been determined from the third harmonic susceptibility analysis and it is found to be 3.09±0.05. The effective number of spins blocked under frustration and their correlation length are determined from the analysis of thermoremanent magnetization.  相似文献   

17.
The Ising antiferromagnetic in the presence of a magnetic field on an anisotropic square lattice is studied by Monte Carlo simulation. We obtained the phase diagram in the T-H plane investigating the reentrant behavior around of the critical field Hc=2Jy. Using the Binder cumulant we locate the critical temperature Tc as a function of H. In order to test our simulation, for null field we obtain the critical behavior of Tc as a function of r=Jy/Jx and is in excellent agreement with exact solution of Onsager. Our results indicate a second-order transition for all values of H and particular case r=1 (independent of the ratio r≠0), where not reentrant behavior was observed.  相似文献   

18.
In this paper we propose a two-dimensional lattice hydrodynamic model considering path change in the bidirectional flow of pedestrians on the road. The stability condition and the mKdV equation describing the density wave of pedestrian traffic jamming are obtained by linear stability and nonlinear analyses. The phase diagram produced from these analyses indicates that the phase transition occurs amongst the freely moving phase, the coexisting phase and the uniformly congested phase below the critical point ac. Additionally the results reveal the existence of a critical magnitude of path change (γc). Once the magnitude of path change exceeds the critical value, it gives rise to unstable density waves. Moreover, numerical simulations are performed and the results are in accordance with the theoretical analyses.  相似文献   

19.
Amorphous materials as diverse as foams, emulsions, colloidal suspensions and granular media can jam into a rigid, disordered state where they withstand finite shear stresses before yielding. Here we give a simple introduction to the surprising physics displayed by a very simple model system for the jamming transition: frictionless, soft spheres at zero temperature and zero shear that act through purely repulsive contact forces. This system starts to become rigid, i.e. goes through the jamming transition, whenever the confining pressure becomes positive. We highlight some of the remarkable geometrical features of the zero pressure jamming point and discuss the peculiar mechanical properties of these systems for small pressures.  相似文献   

20.
We study bootstrap percolation (BP) on hyperbolic lattices obtained by regular tilings of the hyperbolic plane. Our work is motivated by the connection between the BP transition and the dynamical transition of kinetically constrained models, which are in turn relevant for the study of glass and jamming transitions. We show that for generic tilings there exists a BP transition at a nontrivial critical density, 0<ρ c <1. Thus, despite the presence of loops on all length scales in hyperbolic lattices, the behavior is very different from that on Euclidean lattices where the critical density is either zero or one. Furthermore, we show that the transition has a mixed character since it is discontinuous but characterized by a diverging correlation length, similarly to what happens on Bethe lattices and random graphs of constant connectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号