首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trinuclear heterobimetallic Ln(III)-Ru(II) complexes (Ln = Eu, Gd) based on a 1,10-phenanthroline ligand bearing a diethylenetriaminepentaacetic acid (DTPA) core have been synthesized and fully characterized by a range of experimental techniques. The (17)O NMR and proton nuclear magnetic relaxation dispersion (NMRD) measurements of Gd(III)-Ru(II) show that, in comparison to the parent Gd-DTPA, this complex exhibits improved relaxivity, which is the result of an increase of the rotational correlation time. Relaxometry and ultrafiltration experiments indicate that the 1,10-phenanthroline ligand has a high affinity for noncovalent binding to human serum albumin, which results in a high relaxivity r(1) of 14.3 s(-1) mM(-1) at 20 MHz and 37 °C. Furthermore, the Ln(III)-Ru(II) complexes (Ln = Eu, Gd) show an intense light absorption in the visible spectral region due to metal-to-ligand charge transfer (MLCT) transitions. Upon excitation into the MLCT band at 440 nm, the complexes exhibit a bright-red luminescence centered at 610 nm, with a quantum yield of 4.7%. The luminescence lifetime equals 540 ns and is therefore long enough to exceed the fluorescent background. Monometallic lanthanide complexes have also been synthesized, and the Eu(III) analogue shows a characteristic red luminescence with a quantum yield of 0.8%. Taking into account the relaxometric and luminescent properties, the developed Gd(III)-Ru(II) complex can be considered as a potential in vitro bimodal imaging agent.  相似文献   

2.
The amphiphilic gadolinium complex MS-325 ((trisodium-{(2-(R)-[(4,4-diphenylcyclohexyl) phosphonooxymethyl] diethylenetriaminepentaacetato) (aquo)gadolinium(III)}) is a contrast agent for magnetic resonance angiography (MRA). MS-325 consists of two slowly interconverting diastereoisomers, A and B (65:35 ratio), which can be isolated at pH > 8.5 (TyeklAr, Z.; Dunham, S. U.; Midelfort, K.; Scott, D. M.; Sajiki, H.; Ong, K.; Lauffer, R. B.; Caravan, P.; McMurry, T. J. Inorg. Chem. 2007, 46, 6621-6631). MS-325 binds to human serum albumin (HSA) in plasma resulting in an extended plasma half-life, retention of the agent within the blood compartment, and an increased relaxation rate of water protons in plasma. Under physiological conditions (37 degrees C, pH 7.4, phosphate buffered saline (PBS), 4.5% HSA, 0.05 mM complex), there is no statistical difference in HSA affinity or relaxivity between the two isomers (A 88.6 +/- 0.6% bound, r1 = 42.0 +/- 1.0 mM(-1) s(-1) at 20 MHz; B 90.2 +/- 0.6% bound, r1 = 38.3 +/- 1.0 mM(-1) s(-1) at 20 MHz; errors represent 1 standard deviation). At lower temperatures, isomer A has a higher relaxivity than isomer B. The water exchange rates in the absence of HSA at 298 K, kA298 = 5.9 +/- 2.8 x 10(6) s(-1), kB298 = 3.2 +/- 1.8 x 10(6) s(-1), and heats of activation, DeltaHA = 56 +/- 8 kJ/mol, DeltaHB = 59 +/- 11 kJ/mol, were determined by variable-temperature 17O NMR at 7.05 T. Proton nuclear magnetic relaxation dispersion (NMRD) profiles were recorded over the frequency range of 0.01-50 MHz at 5, 15, 25, and 35 degrees C in a 4.5% HSA in PBS solution for each isomer (0.1 mM). Differences in the relaxivity in HSA between the two isomers could be attributed to the differing water exchange rates.  相似文献   

3.
In order to provide insight into the reaction pathways of nitrogen oxide redox species with [Fe-S] models that may parallel those existing in biology, the reactivity of the iron-sulfur species, {[Fe(II)(S(4)NEt(2)N)]}(2) (1) and [Fe(II)(CH(3)CN)(S(4)NEt(2)N)] (2), where (S(4)NEt(2)N)(2-) = 2,6-bis(2-mercaptophenylthiomethyl)-4-diethylaminopyridine(2-), towards NO(+) (nitrosation) has been studied mechanistically in acetonitrile and compared with the corresponding reactions with NO (nitrosylation). For the nitrosation of 1, the reaction takes place in two steps that correspond to the nitrosation of the mononuclear (2) and dinuclear (1) complexes, respectively. For the corresponding carbonyl complex [Fe(II)(CO)(S(4)NEt(2)N)] (3), the nitrosation reaction occurs in a single step. The relative reactivity of the iron-sulfur species is approximately (1)/(2)/(3) = 1/20/10. Activation parameters for the nitrosation of 1 (ΔH(#) = 27 ± 1 kJ mol(-1), ΔS(#) = -111 ± 2 J K(-1) mol(-1), and ΔV(#) = -19 ± 2 cm(3) mol(-1)), 2 (ΔH(#) = 46 ± 2 kJ mol(-1), ΔS(#) = -22 ± 7 J K(-1) mol(-1), and ΔV(#) = -9.7 ± 0.4 cm(3) mol(-1)) and 3 (ΔH(#) = 38 ± 1 kJ mol(-1), ΔS(#) = -44 ± 4 J K(-1) mol(-1), and ΔV(#) = -7.8 ± 0.3 cm(3) mol(-1)) were determined from variable temperature and pressure studies. The significantly negative ΔS(#) and ΔV(#) values found for the nitrosation reactions are consistent with an associative mechanism. A comparative study of the reactivity of the iron-sulfur species 1 to 3 towards NO(+) and NO is presented.  相似文献   

4.
Thermodynamic parameters for the complexation of Eu(3+) with pyromellitic acid (1,2,4,5-benzenetetracarboxylic acid, BTC) as a model system for polymerizable metal-complexing humic acids were determined using temperature-dependent time-resolved laser-induced fluorescence spectroscopy (TRLFS) and isothermal titration calorimetry (ITC). At low metal and ligand concentrations (<50 μM Eu(3+), <1 mM BTC), a 1:1 monomeric Eu-BTC complex was identified in the range of 25-60 °C. At elevated concentrations (>500 μM Eu(3+) and BTC) a temperature-dependent polymerization was observed, where BTC monomers are linked via coordinating shared Eu(3+) ions. The two methods lead to comparable thermodynamic data (ΔH = 18.5 ± 1.5/16.5 ± 0.1 kJ mol(-1); ΔS = 152 ± 5/130 ± 5 J mol(-1) K(-1); TRLFS/ITC) in the absence of polymerization. With the onset of polymerization, TRLFS reveals the water coordination number of the lanthanide, whereas calorimetry is superior in determining the thermodynamic data in this regime. Evaluating the heat uptake kinetics, the monomer and polymer formation steps could be separated by "time-resolved" ITC, revealing almost identical binding enthalpies for the sequential reactions. Structural features of the complexes were studied by Fourier-transform infrared (FTIR) spectroscopy in combination with density functional theory (DFT) calculations showing predominantly chelating coordination with two carboxylate groups in the monomeric complex and monodentate binding of a single carboxylate group in the polymeric complex of the polycarboxylate with Eu(3+). The data show that pyromellitic acid is a suitable model for the study of metal-mediated polymerization as a crucial factor in determining the effect of humic acids on the mobility of heavy metals in the environment.  相似文献   

5.
The tripodal hexadentate picolinate ligand dpaa3- (H3dpaa=N,N'-bis[(6-carboxypyridin-2-yl)methyl]glycine) has been synthesised. It can form 1:1 and 1:2 lanthanide/ligand complexes. The crystal structure of the bis(aquo) lutetium complex [Lu(dpaa)(H2O)2] has been determined by X-ray diffraction studies. The number of water molecules was determined by luminescence lifetime studies of the terbium and europium complexes. The tris(aquo) terbium complex shows a fairly high luminescence quantum yield (22 %). The [Gd(dpaa)(H2O)3] complex displays a high water solubility and an increased stability (pGd=12.3) with respect to the analogous bis(aquo) complex [Gd(tpaa)(H2O)2] (pGd=11.2). Potentiometric and relaxometric studies show the formation of a soluble GdIII hydroxo complex at high pH values. A unique aquohydroxo gadolinium complex has been isolated and its crystal structure determined. This complex crystallises as a 1D polymeric chain consisting of square-shaped tetrameric units. In heavy water, the [Gd(dpaa)-(D2O)3] complex shows a quite high HOD proton relaxivity at high field (11.93 s(-1) mM(-1) at 200 MHz and 298 K) because of the three inner-sphere water molecules. The formation of ternary complexes with physiological anions has been monitored by relaxometric studies, which indicate that even under conditions favourable to the formation of adducts with oxyanions, the mean relaxivity remains higher than those of most of the currently used commercial contrast agents except for the citrate. However, the measured relaxivity (r1=7.9 s(-1) mM(-1)) in a solution containing equimolar concentrations of [Gd(dpaa)(D2O)3] and citrate is still high. The interaction with albumin has been investigated by relaxometric and luminescence studies. Finally, a new versatile method to unravel the geometric and dynamic molecular factors that explain the high-field relaxivities has been developed. This approach uses a small, uncharged non-coordinating probe solute, the outer-sphere relaxivity of which mimics that of the water proton. Only a routine NMR spectrometer and simple mathematical analysis are required.  相似文献   

6.
A new bifunctional octa-coordinating ligand containing an aminobenzyl moiety, DO3APABn (H4DO3APABn = 1,4,7,10-tetraazacyclododecane-4,7,10-triacetic-1-{methyl[(4-aminophenyl)methyl]phosphinic acid}), has been synthesized. Its lanthanide(III) complexes contain one water molecule in the first coordination sphere. The high-resolution 1H and 31P spectra of [Eu(H2O) (DO3APABn)]- show that the twisted square-antiprismatic form of the complexes is more abundant in respect to the corresponding Eu(III)-DOTA complex. The 1H NMRD and variable-temperature 17O relaxation measurements of [Gd(H2O)(DO3APABn)]- show that the water residence time is short (298tauM = 16 ns) and falls into the optimal range predicted by theory for the attainment of high relaxivities once this complex would be endowed by a slow tumbling rate. The relaxivity (298r1 = 6.7 mM(-1) s(-1) at 10 MHz) is higher than expected as a consequence of a significant contribution from the second hydration sphere. These results prompt the use of [Gd(H2O)(DO3APABn)]- as a building block for the set-up of highly efficient macromolecular MRI contrast agents.  相似文献   

7.
Three novel GdDO3A-type bismacrocyclic complexes, conjugated to Ca (2+) chelating moieties like ethylenediaminetetraacetic acid and diethylenetriamine pentaacetic acid bisamides, were synthesized as potential "smart" magnetic resonance imaging contrast agents. Their sensitivity toward Ca (2+) was studied by relaxometric titrations. A maximum relaxivity increase of 15, 6, and 32% was observed upon Ca (2+) binding for Gd 2L (1), Gd 2L (2), and Gd 2L (3), respectively (L (1) = N, N-bis{1-[{[({1-[1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-10-yl]eth-2-yl}amino)carbonyl]methyl}-(carboxymethyl)amino]eth-2-yl}aminoacetic acid; L (2) = N, N-bis[1-({[({alpha-[1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-10-yl]- p-tolylamino}carbonyl)methyl]-(carboxymethyl)}amino)eth-2-yl]aminoacetic acid; L (3) = 1,2-bis[{[({1-[1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-10-yl]eth-2-yl}amino)carbonyl]methyl}(carboxymethyl)amino]ethane). The apparent association constants are log K A = 3.6 +/- 0.1 for Gd 2L (1) and log K A = 3.4 +/- 0.1 for Gd 2L (3). For the interaction between Mg (2+) and Gd 2L (1), log K A = 2.7 +/- 0.1 has been determined, while no relaxivity change was detected with Gd 2L (3). Luminescence lifetime measurements on the Eu (3+) complexes in the absence of Ca (2+) gave hydration numbers of q = 0.9 (Eu 2L (1)), 0.7 (Eu 2L (2)), and 1.3 (Eu 2L (3)). The parameters influencing proton relaxivity of the Gd (3+) complexes were assessed by a combined nuclear magnetic relaxation dispersion (NMRD) and (17)O NMR study. Water exchange is relatively slow on Gd 2L (1) and Gd 2L (2) ( k ex (298) = 0.5 and 0.8 x 10 (6) s (-1)), while it is faster on Gd 2L (3) (k ex (298) = 80 x 10 (6) s (-1)); in any case, it is not sensitive to the presence of Ca (2+). The rotational correlation time, tau R (298), differs for the three complexes and reflects their rigidity. Due to the benzene linker, the Gd 2L (2) complex is remarkably rigid, with a correspondingly high relaxivity despite the low hydration number ( r 1 = 10.2 mM (-1)s (-1) at 60 MHz, 298 K). On the basis of all available experimental data from luminescence, (17)O NMR, and NMRD studies on the Eu (3+) and Gd (3+) complexes of L (1) and L (3) in the absence and in the presence of Ca (2+), we conclude that the relaxivity increase observed upon Ca (2+) addition can be mainly ascribed to the increase in the hydration number, and, to a smaller extent, to the Ca (2+)-induced rigidification of the complex.  相似文献   

8.
The stoichiometric reaction mechanisms, rate constants and activation parameters for inter- and intramolecular ligand exchange reactions in the binary Y/Eu(TTA)(3)(OH(2))(2)-HTTA and the ternary Y/Eu(TTA)(3)(OH(2))(2)-TBP systems have been studied in chloroform using (1)H and (31)P NMR methods. Most complexes contain coordinated water that is in very fast exchange with water in the chloroform solvent. The exchange reactions involving TTA/HTTA and TBP are also fast, but can be studied at lower temperature. The rate constant and activation parameters for the intramolecular exchange between two structure isomers in Y(TTA)(3)(OH(2))(2) and Y(TTA)(3)(TBP)(OH(2)) were determined from the line-broadening of the methine protons in coordinated TTA. The rate equations for the intermolecular exchange between coordinated TTA and free HTTA in both complexes are consistent with a two-step mechanism where the first step is a fast complex formation of HTTA, followed by a rate determining step involving proton transfer from coordinated HTTA to TTA. The rate constants for both the inter- and intramolecular exchange reactions are significantly smaller in the TBP system. The same is true for the activation parameters in the Y(TTA)(3)(OH(2))(2)-HTTA and the ternary Y/Eu(TTA)(3)(TBP)(OH(2))-HTTA systems, which are ΔH(≠) = 71.8 ± 2.8 kJ mol(-1), ΔS(≠) = 62.4 ± 10.3 J mol(-1) K(-1) and ΔH(≠) = 38.8 ± 0.6 kJ mol(-1), ΔS(≠) = -93.0 ± 3.3 J mol(-1) K(-1), respectively. The large difference in the activation parameters does not seem to be related to a difference in mechanism as judged by the rate equation; this point will be discussed in a following communication. The rate and mechanism for the exchange between free and coordinated TBP follows a two-step mechanism, involving the formation of Y(TTA)(3)(TBP)(2).  相似文献   

9.
A two-component ligand system (1) containing 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) as the hosting unit for the lanthanide cations and an appended asymmetrically functionalized 1,10-phenanthroline (phen) as the chromophore was synthesized. The 1:1 complexes with Eu(3+), Gd(3+), Tb(3+), and Yb(3+) have been prepared and studied in aqueous solution. For Gd.1, a relaxivity value of 2.4 mM(-1) s(-1) has been measured at 20 MHz and 25 degrees C, which indicates that there are no water molecules in the first coordination sphere of the metal ion. The analysis of high resolution (1)H NMR spectra of Yb.1 supports this view and suggests the direct involvement of the phen moiety in the coordination of the metal ion. For Eu.1 and Tb.1, the absorption and luminescence spectra, the overall luminescence efficiencies, and the metal-centered (MC) lifetimes were obtained; coordination features were also determined by comparing luminescence properties in water and deuterated water. For Eu.1 and Tb.1, the overall emission sensitization (se) process in air-equilibrated water was found to be notably effective with phi(se) = 0.21 and 0.11, respectively. A detailed study of the steps originating from light absorption at the phen unit and leading to MC sensitized emission was performed.  相似文献   

10.
[Eu(bda)(2)](-) (bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) produces intense circularly polarized luminescence (CPL) in aqueous solutions in the presence of (S)-2-pyrrolidone-5-carboxylic acid upon UV irradiation, although the molecular structure of the europium(III) complex is achiral. The mechanism for the induction of CPL was preliminarily attributed to distortions induced by association with an amino acid to generate chirality in the achiral complex. The optical anisotropy factor (g(lum) value) for the (5)D(0) → (7)F(1) transition was 0.03 in the presence of 1.0 mol dm(-3) of the amino acid. Analysis of the CPL intensity as a function of the amino acid concentration gave an association constant between those of [Eu(bda)(2)](-) and the amino acid, K(aso) = 0.55 ± 0.09 mol(-1) dm(3). These results demonstrate the potential of [Eu(bda)(2)](-) to act as a luminescent chiral-sensing reagent in microscopic spectroscopy.  相似文献   

11.
The 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridines (DATPs) belong to a new family of extracting agents recently developed in the framework of nuclear fuel reprocessing. These molecules exhibit exceptional properties to separate actinides(III) from lanthanides(III) in nitric acid solutions. In a previous work, the use of electrospray ionization mass spectrometry (ESI-MS) provided data such as stoichiometries and conditional stability constants of various DATP complexes with europium and evidenced the unusual capability of DiPTP [bis(di-iso-propyltriazinyl)pyridine] ligand to form 1:3 complexes in nitric acid solution. This latter result has then been further investigated by considering DiPTP complexation features with the complete lanthanide family. Moreover, a complementary study of equilibria in solution with a non intrusive technique such as time-resolved laser-induced luminescence (TRLIL) seemed quite promising to determine thermochemical data such as enthalpy and entropy variations associated with the complexation reaction between Eu(III) and DiPTP. Furthermore, this TRLIL study may also allow ensuring that the observations made on mass spectra actually reflected the equilibrium in solution and not an intermediate state between liquid phase and gaseous phase. The investigation of europium(III) complexation with DiPTP by TRLIL described in this paper first led to highlight the exclusive formation of a 1:3 complex between europium(III) and the DiPTP ligand, specificity already pointed out by ESI-MS. Two different calculation methods, using either luminescence spectra and luminescence decay curves, have then been used to measure the conditional stability constant of the [Eu(DiPTP)(3)](3+) complex. Both methods gave similar results (log beta3(app)= 14.3 +/- 0.6 at pH 2.8) in good agreement with the one previously reported in ESI-MS studies (log beta3(app)= 14.0 +/- 0.6 at pH 2.8). Moreover, while considering the influence of temperature on the value of the stability constant, it was possible to estimate the enthalpy (DeltaH(beta3) = -29 +/- 3 kJ mol(-1) at pH 2.8) and entropy variations (DeltaS(beta3) = 173 +/- 10 J K(-1) mol(-1) at pH 2.8) associated with the [Eu(DiPTP)(3)](3+) complex formation.  相似文献   

12.
The objective of this work was the synthesis of serum albumin targeted, Gd(III)-based magnetic resonance imaging (MRI) contrast agents exhibiting a strong pH-dependent relaxivity. Two new complexes (Gd-glu and Gd-bbu) were synthesized based on the DO3A macrocycle modified with three carboxyalkyl substituents?α to the three ring nitrogen atoms, and a biphenylsulfonamide arm. The sulfonamide nitrogen coordinates the Gd in a pH-dependent fashion, resulting in a decrease in the hydration state, q, as pH is increased and a resultant decrease in relaxivity (r(1)). In the absence of human serum albumin (HSA), r(1) increases from 2.0 to 6.0?mM(-1) s(-1) for Gd-glu and from 2.4 to 9.0?mM(-1) s(-1) for Gd-bbu from pH?5 to 8.5 at 37?°C, 0.47?T, respectively. These complexes (0.2?mM) are bound (>98.9?%) to HSA (0.69?mM) over the pH range 5-8.5. Binding to albumin increases the rotational correlation time and results in higher relaxivity. The r(1) increased 120?% (pH?5) and 550?% (pH?8.5) for Gd-glu and 42?% (pH?5) and 260?% (pH?8.5) for Gd-bbu. The increases in r(1) at pH?5 were unexpectedly low for a putative slow tumbling q=2 complex. The Gd-bbu system was investigated further. At pH?5, it binds in a stepwise fashion to HSA with dissociation constants K(d1)=0.65, K(d2)=18, K(d3)=1360?μM. The relaxivity at each binding site was constant. Luminescence lifetime titration experiments with the Eu(III) analogue revealed that the inner-sphere water ligands are displaced when the complex binds to HSA resulting in lower than expected r(1) at pH?5. Variable pH and temperature nuclear magnetic relaxation dispersion (NMRD) studies showed that the increased r(1) of the albumin-bound q=0 complexes is due to the presence of a nearby water molecule with a long residency time (1-2?ns). The distance between this water molecule and the Gd ion changes with pH resulting in albumin-bound pH-dependent relaxivity.  相似文献   

13.
Interactions between methyl tert-butyl ether (MTBE) and water have been investigated by scanning calorimetry, isothermal titration calorimetry, densitometry, IR-spectroscopy, and gas chromatography. The solubilization of MTBE in water at 25 °C at infinite dilution has ΔH° = -17.0 ± 0.6 kJ mol(-1); ΔS° = -80 ± 2 J mol(-1) K(-1); ΔC(p) = +332 ± 15 J mol(-1) K(-1); ΔV° = -18 ± 2 cm(3) mol(-1). The signs of these thermodynamic functions are consistent with hydrophobic interactions. The occurrence of hydrophobic interaction is further substantiated as IR absorption spectra of MTBE-water mixtures show that MTBE strengthens the hydrogen bond network of water. Solubilization of MTBE in water is exothermic whereas solubilization of water in MTBE is endothermic with ΔH° = +5.3 ± 0.6 kJ mol(-1). The negative mixing volume is explained by a large negative contribution due to size differences between water and MTBE and by a positive contribution due to changes in the water structure around MTBE. Henry's law constants, K(H), were determined from vapor pressure measurements of mixtures equilibrated at different temperatures. A van't Hoff analysis of K(H) gave ΔH(H)° = 50 ± 1 kJ mol(-1) and ΔS(H)° = 166 ± 5 J mol(-1) K(-1) for the solution to gas transfer. MTBE is excluded from the ice phase water upon freezing MTBE-water mixtures.  相似文献   

14.
In order to better understand the volatilization process for ionic liquids, the vapor evolved from heating the ionic liquid 1-ethyl-3-methylimidazolium bromide (EMIM(+)Br(-)) was analyzed via tunable vacuum ultraviolet photoionization time-of-flight mass spectrometry (VUV-PI-TOFMS) and thermogravimetric analysis mass spectrometry (TGA-MS). For this ionic liquid, the experimental results indicate that vaporization takes place via the evolution of alkyl bromides and alkylimidazoles, presumably through alkyl abstraction via an S(N)2 type mechanism, and that vaporization of intact ion pairs or the formation of carbenes is negligible. Activation enthalpies for the formation of the methyl and ethyl bromides were evaluated experimentally, ΔH(?)(CH(3)Br) = 116.1 ± 6.6 kJ/mol and ΔH(?)(CH(3)CH(2)Br) = 122.9 ± 7.2 kJ/mol, and the results are found to be in agreement with calculated values for the S(N)2 reactions. Comparisons of product photoionization efficiency (PIE) curves with literature data are in good agreement, and ab initio thermodynamics calculations are presented as further evidence for the proposed thermal decomposition mechanism. Estimates for the enthalpy of vaporization of EMIM(+)Br(-) and, by comparison, 1-butyl-3-methylimidazolium bromide (BMIM(+)Br(-)) from molecular dynamics calculations and their gas phase enthalpies of formation obtained by G4 calculations yield estimates for the ionic liquids' enthalpies of formation in the liquid phase: ΔH(vap)(298 K) (EMIM(+)Br(-)) = 168 ± 20 kJ/mol, ΔH(f,?gas)(298 K) (EMIM(+)Br(-)) = 38.4 ± 10 kJ/mol, ΔH(f,?liq)(298 K) (EMIM(+)Br(-)) = -130 ± 22 kJ/mol, ΔH(f,?gas)(298 K) (BMIM(+)Br(-)) = -5.6 ± 10 kJ/mol, and ΔH(f,?liq)(298 K) (BMIM(+)Br(-)) = -180 ± 20 kJ/mol.  相似文献   

15.
The kinetics of the Cu(II)(bisoxazoline)-catalyzed diastereo- and enantioselective Gosteli-Claisen rearrangement of 2-alkoxycarbonyl-substituted allyl vinyl ethers has been investigated by enantioselective on-column reaction gas chromatography (ocRGC). Enantioselective ocRGC integrates (stereoselective) catalysis and enantioselective chromatography in a single microcapillary, which is installed in a GC-MS for direct analysis of conversion and selectivity. Thus, this technique allows direct differentiation of thermal and stereoselectively catalyzed reaction pathways and determination of activation parameters and selectivities of the individual reaction pathways starting from stereoisomeric reactants with high precision. Two modes of operation of enantioselective ocRGC are presented to investigate noncatalyzed, i.e., conversion of isopropyl-2-(allyloxy)but-2Z-enoate 1 to isopropyl-3R,S-methyl-2-oxy-hex-5-enoate (±)-2 and the [Cu{(R,R)-Ph-box}](SbF(6))(2)-catalyzed Gosteli-Claisen rearrangement, i.e., conversion of isopropyl-2-(but-2'E-en-1-yloxy)but-2Z-enoate (E,Z)-3 to isopropyl-3S,4S-dimethyl-2-oxy-hex-5-enoate 4b. Eyring activation parameters have been determined by temperature-dependent measurements: Uncatalyzed rearrangement of 1 to (±)-2 gives ΔG(?) (298 K) = 114.1 ± 0.2 kJ·mol(-1), ΔH(?) = 101.1 ± 1.9 kJ·mol(-1), and ΔS(?) = -44 ± 5 J·(K·mol)(-1), and catalyzed rearrangement of (E,Z)-3 to 4b gives ΔG(?)(298 K) = 101.1 ± 0.3 kJ·mol(-1), ΔH(?) = 106.1 ± 6.6 kJ·mol(-1), and ΔS(?) = 17 ± 19 J·(K·mol)(-1).  相似文献   

16.
A novel europium(III) membrane luminescence sensor based on a tridentate bis(phosphinic amide)-phosphine oxide, PhPO(C(6)H(4)POPhN(CH(CH(3))(2))(2))(2) (1), is described. The new luminescent complex, [Eu(1)(2)]Cl(3)2, which is formed between europium(III) and ligand 1 and has a 1 : 2 stoichiometry, has been evaluated in solution. It has the excellent spectroscopic and chemical characteristics that make it appropriate for sensing film applications. All the parameters (polymer, plasticizer, ligand and ionic additive) that can affect the sensitivity and selectivity of the membrane sensor and instrumental conditions have been carefully optimized. The best sensing response (λ(exc) = 229.04 nm, λ(em) = 616.02 nm) was observed for 33.4 : 65.1 : 1.5 (%, w/w) PVC : DOS : 1. The sensing film shows a good response time (10 min) and a very good selectivity toward europium(III) with respect to other lanthanides(III) ions, such as La, Sm, Tb and Yb. The newly-developed sensing film has a linear range from 1.6 × 10(-7) to 5.0 × 10(-6) mol L(-1) for Eu ions with a very low detection limit (4.8 × 10(-8) mol L(-1)) and good sensitivity (9.41 × 10(-7) a.u. mol(-1) L(-1)) to europium. Complexes of [Eu(1)(2)]Cl(3) (2) and [Eu(1)]Cl(3) (4) were isolated by mixing ligand 1 with Eu(Cl(3))·6H(2)O in acetonitrile at room temperature in ligand : metal molar ratios of 1 : 2 and 1 : 1, respectively. The 1 : 1 derivative is the product of thermodynamic control when a molar ratio of ligand to europium salt of 1 : 1 is used. The new compounds have been characterized in both the solid form (IR, MS-TOF, elemental analysis, TGA and X-ray diffraction) and in solution (multinuclear magnetic resonance). In both europium complexes, the ligand acts as a tridentate chelate. Thermogravimetric (TG) studies demonstrated that neither complex 2 or 4 possess any water molecules directly bound to the lanthanide metal, which corroborates the X-ray structure. The investigation of the solution behaviour of the Y(III) complexes with pulsed gradient spin-echo (PGSE) NMR diffusion measurements showed that average structures with 1 : 1 and 1 : 2 stoichiometries are retained in acetonitrile solutions.  相似文献   

17.
We report the study of binuclear Ln(III) chelates of OHEC (OHEC=octaazacyclohexacosane-1,4,7,10,14,17,20,23-octaacetate). The interconversion between two isomeric forms, which occurs in aqueous solution, has been studied by NMR, UV/Vis, EPR, and luminescence spectroscopy, as well as by classical molecular dynamics (MD) simulations. For the first time we have characterized an isomerization equilibrium for a Ln(III) polyaminocarboxylate complex (Ln(III)=Y, Eu, Gd and Tb) in which the metal centre changes its coordination number from nine to eight, such that: [Ln(2)(ohec)(H(2)O)(2)](2-) r<==>[Ln(2)(ohec)](2-)+2 H(2)O. The variable temperature and pressure NMR measurements conducted on this isomerization reaction give the following thermodynamic parameters for Eu(III): K(298)=0.42+/-0.01, DeltaH(0)=+4.0+/-0.2 kJ mol(-1), DeltaS(0)=+6.1+/-0.5 J K(-1) mol(-1) and DeltaV(0)=+3.2+/-0.2 cm(3) mol(-1). The isomerization is slow and the corresponding kinetic parameters obtained by NMR spectroscopy are: k(298)(is)=73.0+/-0.5 s(-1), DeltaH++(is)=75.3+/-1.9 kJ mol(-1), DeltaS++(is)= +43.1+/-5.8 J K(-1) mol(-1) and DeltaV++(is)=+7.9+/-0.7 cm(3) mol(-1). Variable temperature and pressure (17)O NMR studies have shown that water exchange in [Gd(2)(ohec)(H(2)O)(2)](2-) is slow, k(298)(ex)=(0.40+/-0.02)x10(6) s(-1), and that it proceeds through a dissociative interchange I(d) mechanism, DeltaV( not equal )=+7.3+/-0.3 cm(3) mol(-1). The anisotropy of this oblong binuclear complex has been highlighted by MD simulation calculations of different rotational correlation times. The rotational correlation time directed on the Gd-Gd axis is 24 % longer than those based on the axes orthogonal to the Gd-Gd axis. The relaxivity of this binuclear complex has been found to be low, since 1) only [Gd(2)(ohec)(H(2)O)(2)](2-), which constitutes 70 % of the binuclear complex, contributes to the inner-sphere relaxivity and 2) the anisotropy of the complex prevents water molecules from having complete access to both Gd(III) cages; this decreases the outer-sphere relaxivity. Moreover, EPR measurements for the Gd(III) and for the mixed Gd(III)/Y(III) binuclear complexes have clearly shown that the two Gd(III) centres interact intramolecularly; this enhances the electronic relaxation of the Gd(III) electron spins.  相似文献   

18.
The syntheses, single crystal X-ray structures, and magnetic properties of the homometallic μ?-oxo trinuclear clusters [Fe?(μ?-O)(μ-O?CCH?)?(4-Phpy)?](ClO?) (1) and [Fe?(μ?-O)(μ-O?CAd)?(4-Mepy)?](NO?) (2) are reported (Ad = adamantane). The persistence of the trinuclear structure within 1 and 2 in CD?Cl? and C?D?Cl? solutions in the temperature range 190-390 K is demonstrated by 1H NMR. An equilibrium between the mixed pyridine clusters [Fe?(μ?-O)(μ-O?CAd)?(4-Mepy)(3-x)(4-Phpy)(x)](NO?) (x = 0, 1, 2, 3) with a close to statistical distribution of these species is observed in CD?Cl? solutions. Variable-temperature NMR line-broadening made it possible to quantify the coordinated/free 4-Rpy exchanges at the iron centers of 1 and 2: k(ex)2?? = 6.5 ± 1.3 × 10?1 s?1, ΔH(?) = 89.47 ± 2 kJ mol?1, and ΔS(?) = +51.8 ± 6 J K?1 mol?1 for 1 and k(ex)2?? = 3.4 ± 0.5 × 10?1 s?1, ΔH(?) = 91.13 ± 2 kJ mol?1, and ΔS(?) = +51.9 ± 5 J K?1 mol?1 for 2. A limiting D mechanism is assigned for these ligand exchange reactions on the basis of first-order rate laws and positive and large entropies of activation. The exchange rates are 4 orders of magnitude slower than those observed for the ligand exchange on the reduced heterovalent cluster [Fe(III)?Fe(II)(μ?-O)(μ-O?CCH?)?(4-Phpy)?] (3). In 3, the intramolecular Fe(III)/Fe(II) electron exchange is too fast to be observed. At low temperatures, the 1/3 intermolecular second-order electron self-exchange reaction is faster than the 4-Phpy ligand exchange reactions on these two clusters, suggesting an outer-sphere mechanism: k?2?? = 72.4 ± 1.0 × 103 M?1 s?1, ΔH(?) = 18.18 ± 0.3 kJ mol?1, and ΔS(?) = -90.88 ± 1.0 J K?1 mol?1. The [Fe?(μ?-O)(μ-O?CCH?)?(4-Phpy)?](+/0) electron self-exchange reaction is compared with the more than 3 orders of magnitude faster [Ru?(μ?-O)(μ-O?CCH?)?(py)?](+/0) self-exchange reaction (ΔΔG(exptl)(?298) = 18.2 kJ mol?1). The theoretical estimated self-exchange rate constants for both processes compare reasonably well with the experimental values. The equilibrium constant for the formation of the precursor to the electron-transfer and the free energy of activation contribution for the solvent reorganization to reach the electron transfer step are taken to be the same for both redox couples. The larger ΔG(exptl)(?298) for the 1/3 iron self-exchange is attributed to the larger (11.1 kJ mol?1) inner-sphere reorganization energy of the 1 and 3 iron clusters in addition to a supplementary energy (6.1 kJ mol?1) which arises as a result of the fact that each encounter is not electron-transfer spin-allowed for the iron redox couple.  相似文献   

19.
Mn(IV) acetate was generated in acetic acid solutions and characterized by UV-vis spectroscopy, magnetic susceptibility, and chemical reactivity. All of the data are consistent with a mononuclear manganese(IV) species. Oxidation of several substrates was studied in glacial acetic acid (HOAc) and in 95:5 HOAc-H(2)O. The reaction with excess Mn(OAc)(2) produces Mn(OAc)(3) quantitatively with mixed second-order kinetics, k (25.0 °C) = 110 ± 4 M(-1) s(-1) in glacial acetic acid, and 149 ± 3 M(-1) s(-1) in 95% AcOH, ΔH(?) = 55.0 ± 1.2 kJ mol(-1), ΔS(?) = -18.9 ± 4.1 J mol(-1) K(-1). Sodium bromide is oxidized to bromine with mixed second order kinetics in glacial acetic acid, k = 220 ± 3 M(-1) s(-1) at 25 °C. In 95% HOAc, saturation kinetics were observed.  相似文献   

20.
合成了一个双核铕的配合物,[HN(CH3CH2)3]2[Eu2(bdb)4]·CH3CH2OH,{H2bdb=4,4'-双(4",4",4"-三氟代-1",3"-二氧代丁基)邻三联苯}.该配合物在紫外和近紫外光激发下发出铕离子特征红光.配合物中三价铕离子的5D0激发态寿命为704μs,寿命曲线很好地和单指数衰减拟合曲线相吻合.监控614nm的红光发射,激发光谱位于250~420nm范围.在395nm处具有很强的激发强度,该配合物能够被395nm发射的InGaN芯片发出的近紫外光激发而发红光.变温光致发光测定表明,该配合物的温度淬灭效应很小.当温度升高到200℃,依然发射出很强的红光.配合物热稳定性达到260℃.发光性质和热稳定性满足制备LED器件的要求.将该配合物与395nm发射的InGaN芯片组合制备了红色发光二极管,当配合物和硅树脂的质量比为1:20,工作电流为20mA时,红色发光二极管的色坐标为x=0.61,y=0.31,发光效率为3.64lm/W.将该配合物与发蓝绿光的二-2-(2'-羟基苯基)苯并噻唑锌混合涂布在395nm发射的InGaN芯片上制备成了白光发光二极管,合适的质量比为铕配合物:锌配合物:硅树脂=1:1:25.工作电流为20mA时,色坐标x=0.32,y=0.32;色温Tc=6026K;显色指数Ra=81;发光效率为1.26lm/W.结果表明,该配合物是制备半导体高显色指数白光LED的一种红光材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号