共查询到20条相似文献,搜索用时 11 毫秒
1.
Stephan GC Sivasankar C Studt F Tuczek F 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(2):644-652
Through a series of DFT calculations the energy profile of the Chatt cycle is evaluated. This is the counterpiece of our earlier investigations of the Schrock cycle (Angew. Chem. 2005, 117, 5783; Angew. Chem. Int. Ed. 2005, 44, 5639), applying the same quantumchemical methodology and approximations. As for the Schrock cycle, decamethylchromocene acts as reductant. The protonation reactions are considered to be mediated by HBF4/diethyl ether or lutidinium. For all protonation and reduction steps the corresponding free reaction enthalpy changes are calculated. The derived energy profile and corresponding reaction mechanism bear strong similarities to the Schrock cycle. In particular, the most endergonic reaction is the first protonation of the N2 complex and the most exergonic reaction is the cleavage of the N--N bond. If lutidinium is employed as acid and Cp2*Cr as reductant, the reaction course involves steps that are not thermally allowed. For HBF4/diethyl ether as the acid and Cp2*Cr as reducant, however, a catalytic cycle consisting of thermally allowed reactions is principally feasible. This cycle involves a Mo I-fluoro complex as dinitrogen intermediate. It is shown that regeneration to the Mo 0-bis(dinitrogen) complex is thermally not accessible in this system. Moreover, the Mo I fluoro-dinitrogen complex is labile towards disproportionation. The implications of these results with respect to the realization of a catalytic system on the basis of Mo and W phosphine complexes are discussed. 相似文献
2.
Haiges R Boatz JA Schroer T Yousufuddin M Christe KO 《Angewandte Chemie (International ed. in English)》2006,45(29):4830-4835
3.
Kar S Sarkar B Ghumaan S Janardanan D van Slageren J Fiedler J Puranik VG Sunoj RB Kaim W Lahiri GK 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(17):4901-4911
The symmetrically dinuclear title compounds were isolated as diamagnetic [(bpy)2Ru(mu-H2L)Ru(bpy)2](ClO4)2 (1-(ClO4)2) and as paramagnetic [(acac)2Ru(mu-H2L)Ru(acac)2] (2) complexes (bpy=2,2'-bipyridine; acac- = acetylacetonate = 2,4-pentanedionato; H2L = 2,5-dioxido-1,4-benzoquinonediimine). The crystal structure of 22 H2O reveals an intricate hydrogen-bonding network: Two symmetry-related molecules 2 are closely connected through two NH(H2L2-)O(acac-) interactions, while the oxygen atoms of H2L2- of two such pairs are bridged by an (H2O)8 cluster at half-occupancy. The cluster consists of cyclic (H2O)6 arrangements with the remaining two exo-H2O molecules connecting two opposite sides of the cyclo-(H2O)6 cluster, and oxido oxygen atoms forming hydrogen bonds with the molecules of 2. Weak antiferromagnetic coupling of the two ruthenium(III) centers in 2 was established by using SQUID magnetometry and EPR spectroscopy. Geometry optimization by means of DFT calculations was carried out for 1(2+) and 2 in their singlet and triplet ground states, respectively. The nature of low-energy electronic transitions was explored by using time-dependent DFT methods. Five redox states were reversibly accessible for each of the complexes; all odd-electron intermediates exhibit comproportionation constants K(c)>10(8). UV-visible-NIR spectroelectrochemistry and EPR spectroscopy of the electrogenerated paramagnetic intermediates were used to ascertain the oxidation-state distribution. In general, the complexes 1n+ prefer the ruthenium(II) configuration with electron transfer occurring largely at the bridging ligand (mu-H2Ln-), as evident from radical-type EPR spectra for 13+ and (+. Higher metal oxidation states (iii, iv) appear to be favored by the complexes 2m; intense long-wavelength absorption bands and RuIII-type EPR signals suggest mixed-valent dimetal configurations of the paramagnetic intermediates 2+ and 2-. 相似文献
4.
5.
6.
Gemma J. Christian Richard N. L. Terrett Robert Stranger Germán Cavigliasso Brian F. Yates 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(42):11373-11383
The reaction profile of N2 with Fryzuk’s [Nb(P2N2)] (P2N2=PhP(CH2SiMe2NSiMe2CH2)2PPh) complex is explored by density functional calculations on the model [Nb(PH3)2(NH2)2] system. The effects of ligand constraints, coordination number, metal and ligand donor atom on the reaction energetics are examined and compared to the analogous reactions of N2 with the three‐coordinate Laplaza‐Cummins [Mo{N(R)Ar}3] and four‐coordinate Schrock [Mo(N3N)] (N3N=[(RNCH2CH2)3N]3?) systems. When the model system is constrained to reflect the geometry of the P2N2 macrocycle, the N? N bond cleavage step, via a N2‐bridged dimer intermediate, is calculated to be endothermic by 345 kJ mol?1. In comparison, formation of the single‐N‐bridged species is calculated to be exothermic by 119 kJ mol?1, and consequently is the thermodynamically favoured product, in agreement with experiment. The orientation of the amide and phosphine ligands has a significant effect on the overall reaction enthalpy and also the N? N bond cleavage step. When the ligand constraints are relaxed, the overall reaction enthalpy increases by 240 kJ mol?1, but the N2 cleavage step remains endothermic by 35 kJ mol?1. Changing the phosphine ligands to amine donors has a dramatic effect, increasing the overall reaction exothermicity by 190 kJ mol?1 and that of the N? N bond cleavage step by 85 kJ mol?1, making it a favourable process. Replacing NbII with MoIII has the opposite effect, resulting in a reduction in the overall reaction exothermicity by over 160 kJ mol?1. The reaction profile for the model [Nb(P2N2)] system is compared to those calculated for the model Laplaza and Cummins [Mo{N(R)Ar}3] and Schrock [Mo(N3N)] systems. For both [Mo(N3N)] and [Nb(P2N2)], the intermediate dimer is calculated to lie lower in energy than the products, although the final N? N cleavage step is much less endothermic for [Mo(N3N)]. In contrast, every step of the reaction is favourable and the overall exothermicity is greatest for [Mo{N(R)Ar}3], and therefore this system is predicted to be most suitable for dinitrogen cleavage. 相似文献
7.
Scheer M Gregoriades L Bai J Sierka M Brunklaus G Eckert H 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(7):2163-2169
Reaction of the complex [{CpMo(CO)2}2(mu,eta2-P2)] (1) with CuI halides leads to the quantitative formation of the novel one-dimensional linear polymers [CuX{Cp2Mo2(CO)4(mu,eta2:eta1:eta1-P2)}](infinity) (X=Cl (4), Br (5), I (6)). The same products 4 and 5 were obtained when 1 was treated with CuCl2 and CuBr2, respectively. The solid-state structures are compared and their remarkable influence on the respective (31)P magic angle spinning (MAS) NMR spectra is interpreted with the help of density functional theory (DFT) calculations on the model compounds [{(CuX)2{Cp2Cr2(CO)4(mu,eta(2):eta1:eta1-P2)}2}3] (X=Cl (4 a), Br (5 a)) in which the molybdenum atoms are replaced by their lighter homologue chromium. 相似文献
8.
9.
10.
11.
Bose SK Geetharani K Varghese B Mobin SM Ghosh S 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(29):9058-9064
Reaction of [Cp*TaCl4] (Cp*=eta5-C5Me5) with a sixfold excess of LiBH(4)thf followed by BH3thf in toluene at 100 degrees C led to the isolation of hydrogen-rich metallaboranes [(Cp*Ta)2B4H10] (1), [(Cp*Ta)2B5H11] (2), [(Cp*Ta)2B5H10(C6H4CH3)] (3), and [(Cp*TaCl)2B5H11] (4) in modest yield. Compounds 1-3 are air- and moisture-sensitive but 4 is reasonably stable in air. Their structures are predicted by the electron-counting rules to be a bicapped tetrahedron (1), bicapped trigonal bipyramids (2, 3), and a nido structure based on a closo dodecahedron 4. Yellow tantalaborane 1 has a nido geometry with C2v symmetry and is isostructural with [(Cp*M)2B4H8] (M=Cr and Re); whereas 2 and 3 are C3v-symmetric and isostructural with [(Cp*M)2B5H9] (M=Cr, Mo, W) and [(Cp*ReH)2B5Cl5]. The most remarkable feature of 4 is the presence of a hydride ligand bridging the ditantalum center to form a symmetrical tantalaborane cluster with a long Ta--Ta bond (3.22 A). Cluster 4 is a rare example of electronically unsaturated metallaborane containing four TaHB bonds. All these new metallaboranes have been characterized by mass spectrometry, 1H, 11B, and 13C NMR spectroscopy, and elemental analysis, and the structural types were unequivocally established by crystallographic analysis of 1-4. 相似文献
12.
13.
García-Castro M Gracia J Martín A Mena M Poblet JM Sarasa JP Yélamos C 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(3):1030-1041
The capacity of the imido-nitrido organometallic ligand [{Ti(eta5-C5Me5)(mu-NH)}3(mu3-N)] (1) to entrap main group metal halides MXn has been investigated. Treatment of 1 with metal halides in toluene or dichloromethane afforded several soluble adducts [MXn(L)] (L=1) in good yields. The reaction of 1 with one equivalent of Group 1 and 13 monohalides MX afforded single cube-type complexes [XM{(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}] (M=Li, X=Br (2), I (3); M=Na, X=I (4); M=In, X=I (5); M=Tl, X=I (6)). Analogous treatment of 1 with Group 2 and 14 dihalides MX(2) gave the corresponding adducts [I2M{(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}] (M=Mg (7), Ca (8), Sr (9)) and [Cl(2)M{(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}] (M=Sn (10), Pb (11)). The treatment of 1 with SnI2 or the reaction of 10 with MeI at 60 degrees C afforded two azametallocubane units linked by two bridging iodine atoms [{ISn(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}2(mu-I)2] (12). Indium triiodide reacted with 1 in toluene to form the adduct [I3In(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)] (13). Density functional theory calculations have been carried out to study these processes and evaluate the influence of the solvent. X-ray crystal structure determinations have been performed for complexes 10, 12, and 13. 相似文献
14.
Scheer M Gregoriades LJ Zabel M Bai J Krossing I Brunklaus G Eckert H 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(1):282-295
Reaction of complex [Cp2Mo2(CO)4(micro,eta 2-P2)] (Cp=C5H5 (1)) with CuPF6, AgX (X=BF4, ClO4, PF6, SbF6, Al{OC(CF3)3}4) and [(Ph3P)Au(THF)][PF6] (THF=tetrahydrofuran), respectively, results in the facile formation of the dimers 3 b-h of the general formula [M2({Cp2Mo2 (CO)4(micro,eta 2:eta 2-P2)}2)({Cp2Mo2(CO)4 (micro,eta 2:eta 1:eta 1-P2)}2)][X]2 (M=Cu, Ag, Au; X=BF4, ClO4, PF6, SbF6, Al{OC(CF3)3}4). As revealed by X-ray crystallography, all these dimers comprise dicationic moieties that are well-separated from the weakly coordinating anions in the solid state. If 1 is allowed to react with AgNO2 and LAuCl (L=CO or tetrahydrothiophene), respectively, the dimer [Ag2{Cp2Mo2 (CO)4(micro,eta 2:eta 1:eta 1-P2)}2(eta 2-NO2)2] (5) and the complex [AuCl{Cp2Mo2(CO)4(micro,eta 2:eta 1-P2)}] (6) are formed, which have also been characterised by X-ray crystallography. In compounds 5 and 6, the anions remain coordinated to the Group 11 metal centres. Spectroscopic data suggest that the dimers 3 b-h display dynamic behaviour in solution and this is discussed by using the comprehensive results obtained for 3 g (M=Ag; X=Al{OC(CF3)3}4) as a basis. The interpretation of the experimental results is facilitated by density functional theory (DFT) calculations on 3 g (structures, energetics, NMR shielding tensors). The 31P magic angle spinning (MAS) NMR spectra recorded for the dimers 3 b (M=Cu; X=PF6) and 3c (M=Ag; X=BF4) as well as that of the previously reported one-dimensional (1 D) polymer [Ag2{Cp2Mo2(CO)4(micro,eta 2:eta 1:eta 1-P2)}3(micro,eta 1:eta 1-NO3)]n[NO3]n (4) are also discussed herein and the strong dependence of the chemical shift of the phosphorus atoms within each compound on subtle structural differences in the solid state is demonstrated. Furthermore, the X-ray crystallographic and 31P MAS NMR spectroscopic characterisation of a new polymorph of 1 is reported. 相似文献
15.
Reinoso S Vitoria P San Felices L Lezama L Gutiérrez-Zorrilla JM 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(5):1538-1548
The reaction of a monosubstituted Keggin polyoxometalate (POM) generated in situ with copper-phenanthroline complexes in excess ammonium or rubidium acetate led to the formation of the hybrid metal organic-inorganic compounds A7[Cu2(ac)2(phen)2(H2O)2][Cu3(ac)3(phen)3(H2O)3][Si2W22Cu2O78(H2O)].approximately 18 H2O (A=NH4+ (1), Rb+ (2); ac=acetate; phen=1,10-phenanthroline). These compounds are constructed from inorganic and metalorganic interpenetrated sublattices containing the novel bimolecular Keggin POM, [Si2W22Cu2O78(H2O)]12-, and Cu-ac-phen complexes, [Cu(ac)(phen)(H2O)]n n+ (n=2, 3). The packing of compound 1 can be viewed as a stacking of open-framework layers parallel to the xy plane built of hydrogen-bonded POMs, and zigzag columns of pi-stacked Cu-ac-phen complex cations running along the [111] direction. Magnetic and EPR results are discussed with respect to the crystal structure of the compounds. DFT calculations on [Cu(ac)(phen)(H2O)]n n+ cationic complexes have been performed, to check the influence of packing in the complex geometry and determine the magnetic exchange pathways. 相似文献
16.
Laurencin D Garcia Fidalgo E Villanneau R Villain F Herson P Pacifico J Stoeckli-Evans H Bénard M Rohmer MM Süss-Fink G Proust A 《Chemistry (Weinheim an der Bergstrasse, Germany)》2004,10(1):208-217
Reactions of the molybdates Na(2)MoO4.2 H2O and (nBu(4)N)2[Mo2O7] with [[Ru(arene)Cl(2)](2)] (arene=C(6)H5CH3, 1,3,5-C6H3(CH3)(3), 1,2,4,5-C6H2(CH3)4) in water or organic solvents led to formation of the triple-cubane organometallic oxides [[Ru(eta(6)-arene)](4)Mo4O16], whose crystal and molecular structures were determined. Refluxing triple cubane [[Ru(eta(6)-C6H5CH3)](4)Mo4O16] in methanol caused partial isomerization to the windmill form. The two isomers of [[Ru(eta(6)-C6H5CH3)](4)Mo4O16] were characterized by Raman and Mo K-edge X-ray absorption spectroscopy (XAS), both in the solid-state and in solution. This triple-cubane isomer was also used as a spectroscopic model to account for isomerization of the p-cymene windmill [[Ru(eta(6)-1,4-CH3C6H4CH(CH3)2)](4)Mo4O16] in solution. Using both Raman and XAS techniques, we were then able to determine the ratio between the windmill and triple-cubane isomers in dichloromethane and in chloroform. Density functional calculations on [[Ru(eta(6)-arene)](4)Mo4O16] (arene=C6H6, C6H5CH3, 1,3,5-C6H3(CH3)3, 1,4-CH3C6H4CH(CH3)2, C6(CH3)6) suggest that the windmill form is intrinsically more stable, provided the complexes are assumed to be isolated. Intramolecular electrostatic interactions and steric bulk induced by substituted arenes were found to modulate but not to reverse the energy difference between the isomers. The stability of the triple-cubane isomers should therefore be accounted for by effects of the surroundings that induce a shift in the energy balance between both forms. 相似文献
17.
Reactions of laser-ablated lanthanum atoms with CO molecules in solid argon have been studied. The neutral lanthanum monocarbonyl (LaCO), produced upon sample deposition at 7 K, exhibits a C-O stretching frequency of 1772.7 cm(-1); to the best of our knowledge this is the lowest yet observed for a terminal CO in a neutral metal-carbonyl molecule (MCO, M = metal atom), implying anomalously enhanced metal-to-CO back-bonding. The infrared (IR) absorption band at 1145.9 cm(-1) is assigned to the C-O stretching mode of the side-on-bonding CO in the La2[eta2(mu2-C,O)] molecule. This CO-activated molecule undergoes an UV/Vis-photoinduced rearrangement to the CO-dissociated molecule, c-La2(mu-C)(mu-O). Density functional theory (DFT) calculations have been performed on these molecules, the results of which lend strong support to the experimental assignments of the IR spectra. LaCO is predicted to have a quartet ground state, corresponding to a linear geometry. Its formation involves La 6s-->4f promotion, which increases the strength of La-CO bonding by decreasing the sigma repulsion and, remarkably, by increasing the La 5d and 4f-->CO 2pi back-bonding. The observations schematically depict the whole process, starting with the interaction of CO with metal and ending with CO dissociation by the lanthanum dimer. 相似文献
18.
Design and Syntheses of Three Novel Carbonate Halides: Cs3Pb2(CO3)3I,KBa2(CO3)2F,and RbBa2(CO3)2F 下载免费PDF全文
Lili Liu Dr. Yun Yang Dr. Xiaoyu Dong Bingbing Zhang Dr. Ying Wang Prof. Zhihua Yang Prof. Shilie Pan 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(9):2944-2954
Three new carbonate halides, Cs3Pb2(CO3)3I, KBa2(CO3)2F and RbBa2(CO3)2F have been synthesized with hydrothermal and solid‐state methods. Cs3Pb2(CO3)3I is the first product in the lead carbonate iodides family; KBa2(CO3)2F and RbBa2(CO3)2F are the first two centrosymmetric compounds found in the alkaline–alkaline earth carbonate fluorides family. Cs3Pb2(CO3)3I crystallizes in a centrosymmetric space group C2/m, and exhibits a two‐ dimensional layered structure which is formed by [Cs4Pb4(CO3)6I2]∞ double‐layers consisting of [Pb2(CO3)3I]∞ single‐layers bridged by the Cs atoms. KBa2(CO3)2F and RbBa2(CO3)2F, which are isostructural, crystallize in a trigonal crystal system with a centric space group of R featuring a honeycomb‐like framework. First principle calculations indicate that Cs3Pb2(CO3)3I has a moderate birefringence and explain the difference between the band gaps of the title compounds from electron structures. The effects of cations and halogens on the structures and properties of the title compounds are also discussed. 相似文献
19.
20.
Complexes of W(CO)(5) with neutral diatomic pnictogen ligands N(2), P(2), As(2), Sb(2), and Bi(2) and anionic Group 14 ligands Si(2) (2-), Ge(2) (2-), Sn(2) (2-), and Pb(2) (2-) coordinated in both side-on and end-on fashion have been optimized by using density functional theory at the BP86 level with valence sets of TZP quality. The calculated bond energies have been used to compare the preferential binding modes of each respective ligand. The results were interpreted by analyzing the nature of the interaction between the ligands and the metal fragment using an energy partitioning method. This yields quantitative information regarding the strength of covalent and electrostatic interactions between the metal and ligand, as well as the contributions by orbitals of different symmetry to the covalent bonding. Results show that all the ligands studied bind preferentially in a side-on coordination mode, with the exception of N(2), which prefers to coordinate in an end-on mode. The preference of the heavier homologues P(2)-Bi(2) for binding in a side-on mode over the end-on mode in the neutral complexes [(CO)(5)WE(2)] comes mainly from the much stronger electrostatic attraction in the former species. The energy difference between the side-on and end-on isomers of the negatively charged complexes with the ligands Si(2) (2-), Ge(2) (2-), Sn(2) (2-), and Pb(2) (2-) is much less and it cannot be ascribed to a particular bonding component. 相似文献