首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, there has been a growing interest in identifying and applying new, naturally occurring molecules that promote health. Probiotics are defined as “live microorganisms which, when administered in adequate amounts, confer health benefits on the host”. Quite a few fermented products serve as the source of probiotic strains, with many factors influencing the effectiveness of probiotics, including interactions of probiotic bacteria with the host’s microbiome. Prebiotics contain no microorganisms, only substances which stimulate their growth. Prebiotics can be obtained from various sources, including breast milk, soybeans, and raw oats, however, the most popular prebiotics are the oligosaccharides contained in plants. Recent research increasingly claims that probiotics and prebiotics alleviate many disorders related to the immune system, cancer metastasis, type 2 diabetes, and obesity. However, little is known about the role of these supplements as important dietary components in preventing or treating cardiovascular disease. Still, some reports and clinical studies were conducted, offering new ways of treatment. Therefore, the aim of this review is to discuss the roles of gut microbiota, probiotics, and prebiotics interventions in the prevention and treatment of cardiovascular disease.  相似文献   

2.
Siderophores, such as enterobactin (Ent), are small molecules that can be selectively imported into bacteria along with iron by cognate transporters. Siderophore conjugates are thus a promising strategy for delivering functional reagents into bacteria. In this work, we present an easy‐to‐perform, one‐pot chemoenzymatic synthesis of functionalized monoglucosylated enterobactin (MGE). When functionalized MGE is conjugated to a rhodamine fluorophore, which affords RhB‐Glc‐Ent, it can selectively label Gram‐negative bacteria that utilize Ent, including some E. coli strains and P. aeruginosa. V. cholerae, a bacterium that utilizes linearized Ent, can also be weakly targeted. Moreover, the targeting is effective under iron‐limiting but not iron‐rich conditions. Our results suggest that the RhB‐Glc‐Ent probe is sensitive not only to the bacterial strain but also to the iron condition in the environment.  相似文献   

3.
The activities and modes of probiotic action of lactic acid bacteria isolated from infant feces were investigated for alternative application in the prevention and biotherapy of colon cancer. From a total of 81 isolates of Gram-positive rod and cocci bacteria obtained from healthy infants, only 15 isolates had the probiotic criteria which included growth inhibition against eight food-borne pathogens, no blood hemolysis, and tolerance to gastrointestinal tract properties such as pH?2.5 and 0.3 % bile salt. Four probiotic bacteria showed antiproliferation of colon cancer cells with the use of MTT and Trypan blue exclusion assay at the rates of 17–35 %. Through comparison of probiotic 16S rRNA sequences, they were identified as Pediococcus pentosaceus FP3, Lactobacillus salivarius FP25, L. salivarius FP35, and Enterococcus faecium FP51. Finding the mechanism of proliferative inhibition of colon cancer cells in this study indicated synergic induction by probiotic bacteria directly adhered to these cancer cells and triggered the bioproduction of short-chain fatty acids, mainly butyric and propionic acids. This study suggested that the use of these probiotics may be suitable as an alternative bioprophylactic and biotherapeutic strategy for colon cancer.  相似文献   

4.
Multivalent peptide–oligosaccharide conjugates were prepared and used to investigate the multivalency effect concerning the activity of Bid‐BH3 peptides in live cells. Dextran oligosaccharides were carboxyethylated selectively in the 2‐position of the carbohydrate units and activated for the ligation of N‐terminally cysteinylated peptides. Ligation through maleimide coupling was found to be superior to the native chemical ligation protocol. Monomeric Bid‐BH3 peptides were virtually inactive, whereas pentameric peptide conjugates induced apoptosis up to 20‐fold stronger at identical peptide concentrations. Comparison of lowly multivalent and highly multivalent peptide dextrans proved a multivalency effect in life cells which was specific for the BH3 peptide sequence.  相似文献   

5.
Colon‐residing bacteria, such as vancomycin‐resistant Enterococcus faecalis and Bacteroides fragilis, can cause a range of serious clinical infections. Photodynamic antimicrobial chemotherapy (PACT) may be a novel treatment option for these multidrug resistant organisms. The aim of this study was to formulate a Eudragit®‐based drug delivery system, via hot melt extrusion (HME), for targeting colonic release of photosensitizer. The susceptibility of E. faecalis and B. fragilis to PACT mediated by methylene blue (MB), meso‐tetra(N‐methyl‐4‐pyridyl)porphine tetra‐tosylate (TMP), or 5‐aminolevulinic acid hexyl‐ester (h‐ALA) was determined, with tetrachlorodecaoxide (TCDO), an oxygen‐releasing compound, added in some studies. Results show that, for MB, an average of 30% of the total drug load was released over a 6‐h period. For TMP and h‐ALA, these values were 50% and 16% respectively. No drug was released in the acidic media. Levels of E. faecalis and B. fragilis were reduced by up to 4.67 and 7.73 logs, respectively, on PACT exposure under anaerobic conditions, with increased kill associated with TCDO. With these formulations, photosensitizer release could potentially be targeted to the colon, and colon‐residing pathogens killed by PACT. TCDO could be used in vivo to generate oxygen, which could significantly impact on the success of PACT in the clinic.  相似文献   

6.
Protein-DNA conjugates have found numerous applications in the field of diagnostics and nanobiotechnology, however, their intrinsic susceptibility to DNA degradation by nucleases represents a major obstacle for many applications. We here report the selective covalent conjugation of the protein streptavidin (STV) with phosphorothioate oligonucleotides (psDNA) containing a terminal alkylthiolgroup as the chemically addressable linking unit, using a heterobifunctional NHS-/maleimide crosslinker. The psDNA-STV conjugates were synthesized in about 10% isolated yields. We demonstrate that the terminal alkylthiol group selectively reacts with the maleimide while the backbone sulfur atoms are not engaged in chemical conjugation. The novel psDNA-STV conjugates retain their binding capabilities for both biotinylated macromolecules and the complementary nucleic acid. Moreover, the psDNA-STV conjugate retained its binding capacity for complementary oligomers even after a nuclease digestion step, which effectively degrades deoxyribonucleotide oligomers and thus the binding capability of regular DNA-STV conjugates. The psDNA-STV therefore hold particular promise for applications e.g. in proteome research and novel biosensing devices, where interfering endogenous nucleic acids need to be removed from analytes by nuclease digestion.  相似文献   

7.
Carbohydrate microarrays are an emerging tool for the high‐throughput screening of carbohydrate–protein interactions that represent the basis of many biologically and medicinally relevant processes. The crucial step in the preparation of carbohydrate arrays is the attachment of carbohydrate probes to the surface. We examined the Diels–Alder reaction with inverse‐electron‐demand (DARinv) as an irreversible, chemoselective ligation reaction for that purpose. After having shown the efficiency of the DARinv in solution, we prepared a series of carbohydrate–dienophile conjugates that were printed onto tetrazine‐modified glass slides. Binding experiments with fluorescently labeled lectins proved successful and homogeneous immobilization was achieved by the DARinv. For immobilization of nonfunctionalized reducing oligosaccharides we developed a bifunctional chemoselective linker that enabled the attachment of a dienophile tag to the oligosaccharides through oxime ligation. The conjugates obtained were successfully immobilized on glass slides. The presented strategies for the immobilization of both synthetic carbohydrate derivatives and unprotected reducing oligosaccharides facilitate the preparation of high‐quality carbohydrate microarrays by means of the chemoselective DARinv. This concept can be readily adapted for the preparation of other biomolecule arrays.  相似文献   

8.
The development of methods for conjugation of DNA to proteins is of high relevance for the integration of protein function and DNA structures. Here, we demonstrate that protein‐binding peptides can direct a DNA‐templated reaction, selectively furnishing DNA–protein conjugates with one DNA label. Quantitative conversion of oligonucleotides is achieved at low stoichiometries and the reaction can be performed in complex biological matrixes, such as cell lysates. Further, we have used a star‐like pentameric DNA nanostructure to assemble five DNA–Rituximab conjugates, made by our reported method, into a pseudo‐IgM antibody structure that was subsequently characterized by negative‐stain transmission electron microscopy (nsTEM) analysis.  相似文献   

9.
Antibody–drug conjugates (ADCs) offer increased efficacy and reduced toxicity compared to systemic chemotherapy. Less attention has been paid to peptide–drug delivery, which has the potential for increased tumor penetration and facile synthesis. We report a knottin peptide–drug conjugate (KDC) and demonstrate that it can selectively deliver gemcitabine to malignant cells expressing tumor‐associated integrins. This KDC binds to tumor cells with low‐nanomolar affinity, is internalized by an integrin‐mediated process, releases its payload intracellularly, and is a highly potent inhibitor of brain, breast, ovarian, and pancreatic cancer cell lines. Notably, these features enable this KDC to bypass a gemcitabine‐resistance mechanism found in pancreatic cancer cells. This work expands the therapeutic relevance of knottin peptides to include targeted drug delivery, and further motivates efforts to expand the drug‐conjugate toolkit to include non‐antibody protein scaffolds.  相似文献   

10.
Homogeneous antibody–drug conjugates (ADCs), generated by site‐specific toxin linkage, show improved therapeutic indices with respect to traditional ADCs. However, current methods to produce site‐specific conjugates suffer from low protein expression, slow reaction kinetics, and low yields, or are limited to particular conjugation sites. Here we describe high yielding expression systems that efficiently incorporate a cyclopropene derivative of lysine (CypK) into antibodies through genetic‐code expansion. We express trastuzumab bearing CypK and conjugate tetrazine derivatives to the antibody. We show that the dihydropyridazine linkage resulting from the conjugation reaction is stable in serum, and generate an ADC bearing monomethyl auristatin E that selectively kills cells expressing a high level of HER2. Our results demonstrate that CypK is a minimal bioorthogonal handle for the rapid production of stable therapeutic protein conjugates.  相似文献   

11.
Formylglycine‐generating enzymes are of increasing interest in the field of bioconjugation chemistry. They catalyze the site‐specific oxidation of a cysteine residue to the aldehyde‐containing amino acid Cα‐formylglycine (FGly). This non‐canonical residue can be generated within any desired target protein and can subsequently be used for bioorthogonal conjugation reactions. The prototypic formylglycine‐generating enzyme (FGE) and the iron‐sulfur protein AtsB display slight variations in their recognition sequences. We designed specific tags in peptides and proteins that were selectively converted by the different enzymes. Combination of the different tag motifs within a single peptide or recombinant protein enabled the independent and consecutive introduction of two formylglycine residues and the generation of heterobifunctionalized protein conjugates.  相似文献   

12.
Antibody–drug conjugates hold considerable promise as anticancer agents, however, producing them remains a challenge and there is a need for mild, broadly applicable, site‐specific conjugation methods that yield homogenous products. It was envisaged that enzymatic remodeling of the oligosaccharides of an antibody would enable the introduction of reactive groups that can be exploited for the site‐specific attachment of cytotoxic drugs. This is based on the observation that glycosyltransferases often tolerate chemical modifications in their sugar nucleotide substrates, thus allowing the installation of reactive functionalities. An azide was incorporated because this functional group is virtually absent in biological systems and can be reacted by strain‐promoted alkyne–azide cycloaddition. This method, which does not require genetic engineering, was used to produce an anti‐CD22 antibody modified with doxorubicin to selectively target and kill lymphoma cells.  相似文献   

13.
Increasing knowledge of the role of the intestinal microbiome in human health and well-being has resulted in increased interest in prebiotics, mainly oligosaccharides of various origins. To date, there are no reports in the literature on the prebiotic properties of oligosaccharides produced by the hydrolysis of pure fungal α-(1→3)-glucan. The aim of this study was to prepare α-(1→3)-glucooligosaccharides (α-(1→3)-GOS) and to perform initial evaluation of their prebiotic potential. The oligosaccharides were obtained by acid hydrolysis of α-(1→3)-glucan isolated from the fruiting bodies of Laetiporus sulphureus and then, characterized by HPLC. Fermentation of α-(1→3)-GOS and reference prebiotics was compared in in vitro pure cultures of Lactobacillus, Bifidobacterium, and enteric bacterial strains. A mixture of α-(1→3)-GOS, notably with a degree of polymerization of 2 to 9, was obtained. The hydrolysate was utilized for growth by most of the Lactobacillus strains tested and showed a strong bifidogenic effect, but did not promote the growth of Escherichia coli and Enterococcus faecalis. α-(1→3)-GOS proved to be effective in the selective stimulation of beneficial bacteria and can be further tested to determine their prebiotic functionality.  相似文献   

14.
Targeted therapy based on protein–drug conjugates has attracted significant attention owing to its high efficacy and low side effects. However, efficient and stable drug conjugation to a protein binder remains a challenge. Herein, a chemoenzymatic method to generate highly stable and homogenous drug conjugates with high efficiency is presented. The approach comprises the insertion of the CaaX sequence at the C‐terminal end of the protein binder, prenylation using farnesyltransferase, and drug conjugation through an oxime ligation reaction. MMAF and an EGFR‐specific repebody are used as the antitumor agent and protein binder, respectively. The method enables the precisely controlled synthesis of repebody–drug conjugates with high yield and homogeneity. The utility of this approach is illustrated by the notable stability of the repebody–drug conjugates in human plasma, negligible off‐target effects, and a remarkable antitumor activity in vivo. The present method can be widely used for generating highly homogeneous and stable PDCs for targeted therapy.  相似文献   

15.
Probiotics and prebiotics present regulators with challenges because they require a demonstrated positive health outcome and proof that the prebiotic or probiotic is the agent of action once safety aspects have been satisfied. Thus, probiotic and prebiotic definitions are important because they will set the criteria by which these materials will be judged within the regulatory sphere. Use of the terms probiotic and prebiotic are, themselves, considered health claims in some jurisdictions, so that both product health claims and product content labeling may be regulated. Currently accepted definitions of prebiotic and probiotic make it easier to draw a straight line between ingestion and health outcome for probiotics but much more difficult for prebiotics, where a health outcome must be linked to changes in specific bacterial species within the gut microbial community. These challenges highlight the difficulties facing regulatory bodies and the scientific community when emerging science is turned into consumable product.  相似文献   

16.
Essential oils (EOs) are a complex mixture of hydrophobic and volatile compounds synthesized from aromatic plants, commonly present in the human diet. In recent years, many in vitro studies have suggested possible anticancer properties of single EO compounds, on colorectal cancer (CRC) cells. However, the majority of these studies did not compare the effects of these compounds on normal and cancer colon cells. By using NCM-460, a normal human mucosal epithelial cell line, Caco-2, a human colon epithelial adenocarcinoma cell line, and SW-620, colon cancer cells derived from lymph node metastatic site, we identified cinnamaldehyde, derived from cinnamon EO and eugenol, derived from bud clove EO, as compounds with a specific anticancer action selectively targeting the transformed colonic cells. Both cinnamaldehyde (75 µM) and eugenol (800 µM), after 72 h of treatment, were capable to induce apoptosis, necrosis and a cell cycle slowdown in Caco-2 and in SW-620, but not in NCM-460 cells. If associated with a targeted delivery to the colon, these two compounds could prove effective in the prevention or treatment of CRC.  相似文献   

17.
In this study, photovoltaic (PV) properties of dye‐sensitized solar cells (DSSCs) incorporated with graphene oxide nanosheet‐polyaniline (GOS‐PANI) nanohybrid/poly(ethylene oxide) (PEO) blend gel electrolytes were investigated. Chemical structure and composition of GOS‐PANI nanohybrids were characterized by Raman spectroscopy and X‐ray photoelectron spectroscopy. The images of transmission electron microscopy revealed that PANI nanorods were anchored to the single‐layered GOS for the GOS‐PANI nanohybrids. Ionic conductivities of the GOS‐PANI/PEO–based gel electrolytes were measured using a conductivity meter. The electrochemical catalytic activities of the GOS‐PANI nanohybrids were determined through cyclic voltammetry. These GOS‐PANI nanohybrids were served as the extended electron transfer materials and catalyst for the electrochemical reduction of I3?. Due to the enhancement of the ionic conductivity and electrochemical catalytic activity of the gel electrolyte, better PV performance was observed for the DSSCs based on the GOS‐PANI containing electrolytes as compared to the pristine PEO electrolyte‐based DSSC sample. Moreover, PV performances of the GOS‐PANI/PEO–based DSSCs were closely related to the PANI content of GOS‐PANI nanohybrids. The highest photo‐energy conversion efficiency (5.63%) was obtained for an optimized GOS‐PANI/PEO (5:95, w/w) blend gel electrolyte‐based DSSC sample. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 321–332  相似文献   

18.
We have developed a smart nanodevice for the highly efficient and selective detection of glycoproteins. This polyfunctional device is fabricated through the rational functionalization of macroporous silica foam (MOSF) materials with a boron species (B‐MOSF) and amino groups (NH2‐MOSF), and then the integration of MOSF, B‐MOSF and NH2‐MOSF materials. In such a device, a macroporous structure with very large‐pore sizes (diameters≈100 nm) and high‐pore volumes (>0.65 cm3 g?1) is advantageous to efficiently fasten the enzymatic reaction. The targeted specific glycopeptides of the products can be selectively isolated and enriched in B‐MOSF through the chemo‐affinity between boronic acid and glycol groups, while the non‐specific peptides are released to the solutions, or further purified by MOSF and NH2‐MOSF, which have opposite charges. As a result, the protein digestion and glycol‐peptide isolation can be simultaneously achieved in the functionalized macroporous materials in one step, which is a great advantage compared to conventional multi‐procedure and time‐consuming techniques.  相似文献   

19.
Described here is a method for the conjugation of phosphorothioate oligonucleotides (PSOs) with peptides. PSOs are key to antisense technology. Peptide–PSO conjugates may improve target specificity, tissue distribution, and cellular uptake of PSOs. However, the highly nucleophilic phosphorothioate structure poses a challenge to conjugation chemistry. Herein, we introduce a new method which involves a sequence of oxime ligation and strain‐promoted [2+3] cycloaddition. The usefulness of the method was demonstrated in the synthesis of peptide–PSO conjugates that targeted two suppressors of both the intrinsic and the extrinsic pathway of apoptosis. It is shown that the activity of a PSO sequence targeted against mRNA from c‐Flip can be enhanced by conjugation with a peptide mimetic designed to inhibit the X‐linked inhibitor of apoptosis protein (XIAP).  相似文献   

20.
Rapid, selective and sensitive determination of N‐linked oligosaccharides in glycoproteins (ovalbumin, ribonuclease B and fetuin) was performed by ultra‐performance liquid chromatography (UPLC) with fluorescence (FL) and electrospray ionization time‐of‐flight mass spectrometry (ESI‐TOF‐MS). The asparaginyl‐oligosaccharide moiety was first liberated from each glycoprotein by pronase E (a proteolitic enzyme). The oligosaccharide fractions separated by gel‐permeation chromatography were labeled with 1‐pyrenesulfonyl chloride (PSC, a fluorescence reagent), separated by UPLC in a short run time, and then detected by FL and TOF‐MS. The PSC‐labeled oligosaccharides were selectively identified from the FL detection and then sensitively determined by ESI‐TOF‐MS. As the results, 15, eight and four kinds of N‐linked oligosaccharides were detected from ovalbumin, ribonuclease B and fetuin, respectively. Because the present method is rapid (within 9 min), selective and sensitive (approximate 60 fmol, S/N = 5), the determination of N‐linked oligosaccharides in various glycoproteins seems to be possible. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号