首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of a novel, and highly selective Fe3+ ion sensor based on anthrone-spirolactam and its quinoline hybrid ligand is reported. The designed ligand displayed selective detection of Fe3+ ions with enhanced fluorescence emission. The complexation of Fe3+ ion led to a red shift of 32 nm from 420 nm to 452 nm, and a several fold increase in intensity with fluorescent green emission. The complexation (detection) of Fe3+ ions with ligand resulted in chelation enhanced fluorescence and intramolecular charge transfer through the inhibition of C=N isomerization. This hybrid sensor shows high sensitivity and selectivity, spontaneous response, and works on a wide pH range a minimum detection limit of 6.83 × 10−8 M. Importantly, the sensor works through the fluorescence turn-on mechanism that overcomes the paramagnetic effect of Fe3+ ions. The binding mechanism between the ligand and the Fe3+ ions was established from the Job's plot method, optical studies, Fourier transfor infrared spectroscopy, NMR titration, fluorescence life-time studies, and density functional theory optimization. The sensor displayed excellent results in the quantification of Fe3+ ions from real water samples. Furthermore, due to its biocompatibility nature, fluorescent spotting of Fe3+ ions in live cells revealed its bioimaging applications.  相似文献   

2.
A new optical chemical sensor is established for sensitive and selective spectrophotometric detection of copper based on the immobilization of 3‐(2‐methyl‐2,3‐dihydro‐1,3‐benzothiezol‐2‐yl)‐2H‐chromen‐2‐one on a triacetylcellulose membrane. Copper ions react with the immobilized ligand and cause an increase in the absorption of the membrane at 550 nm in universal buffer solution at pH = 6. The effects of pH, indicator concentration and reaction time on the immobilization of the ligand were studied. This optode exhibits a linear range of 7.0 × 10?7 to 1 × 10?4 mol l?1 of copper ion concentration with a limit of detection of 3.0 × 10?7 mol l?1. The response time of the newly designed optode is within 3 min. The effect of different possible interfering species was investigated and it was found that the sensor has very good selectivity. The proposed sensor benefits from advantages such as low cost, high stability, low detection limit, fast response time, reproducibility, relatively long lifetime, and good selectivity for Cu2+ ion determination among a large number of alkali, alkaline earth, transition and heavy metal ions. The sensor can readily be regenerated with thiourea solution and its response is reversible and reproducible (relative standard deviation < 1.4%). The proposed optode was applied successfully for the determination of Cu(II) in various samples.  相似文献   

3.
A highly selective molecularly imprinted polymer electrochemical sensor for In3+ detection was proposed. In3+ ion was chelated with alizarin red S to form a complex In‐ARS. The complex was used as the template molecule to prepare a molecularly imprinted polymer (MIP) based sensor. The selectivity of the sensor was improved significantly due to the three‐dimensional specific structure of the complex, and the selective complexation of ligands for metal ions. Moreover, the sensitivity of the proposed sensor was improved by recording the reductive current of ligand in complex. This technique was highly sensitive for quantitative analysis of In3+ in the concentrations ranged from 1×10?8 mol/L to 2.5×10?7 mol/L with a detection limit of 4.7×10?9 mol/L. The proposed sensor has been successfully used in detecting In3+ in real samples.  相似文献   

4.
Mixed ligand dinuclear copper(II) complexes of the general formula [Cu2(Rdtc)tpmc)](ClO4)3 with octaazamacrocyclic ligand tpmc and four different heterocyclic dithiocarbamate ligands Rdtc?, as well as the complexes [Cu2(tpmc)](ClO4)4 and [Cu(tpmc)](ClO4)2?2H2O were studied in aqueous NaClO4 and HClO4 solutions by cyclic voltammetry on glassy carbon electrode. The electrochemical properties of the ligands and Cu(II) complexes were correlated with their electronic structure. Conductometric experiments showed different stoichiometry in complexation of tpmc with Cu2+ ions and transport of ions in acetonitrile and in aqueous media. These studies clarified the application of this macrocyclic ligand as ionophore in a PVC membrane copper(II) selective electrode and contributed elucidation of its sensor properties.  相似文献   

5.
《Electroanalysis》2018,30(8):1837-1846
This study reports a highly sensitive electrochemical sensor based on Bi film modified glassy carbon electrode (BiF/GCE) for total determination and speciation trace concentrations of copper(II) ions in environmental water samples. Square wave‐adsorptive anodic stripping voltammetric (SW‐ASV) experiment was performed for monitoring selective accumulation of copper(II) with reagent 3‐[(2‐mercapto‐vinyl)‐hydrazono]‐1,3‐dihydro‐indol‐2‐one (MHDI) at pH 9–10. The mechanism of the electrode reaction of Cu2+‐MHDI complex was safely assigned. The sensor exhibited a wide linear range (3.22×10−9–2.0×10−7 mol L−1) with lower limits of detection (LOD) and quantitation (LOQ) of 9.6×1−10 and 3.22×10−9 mol L−1, respectively (R2=0.9993). The proposed sensor exhibited interference from active metal ions e. g. Cd, Hg. The performance of the proposed method was compared successfully with most of the reported methods and comparable efficiencies were obtained. The analytical utility of the proposed SW‐ASV method has been successfully validated for trace analysis of copper(II) in environmental water samples. The method offers a precise, accurate approach with good reproducibility, robustness, ruggedness, and cost effectiveness.  相似文献   

6.
Two macrocyclic ligands based on cyclam with trans‐disposed N‐methyl and N‐(4‐aminobenzyl) substituents as well as two methylphosphinic (H2 L1 ) or methylphosphonic (H4 L2 ) acid pendant arms were synthesised and investigated in solution. The ligands form stable complexes with transition metal ions. Both ligands show high thermodynamic selectivity for divalent copper over nickel(II) and zinc(II)—K(CuL) is larger than K(Ni/ZnL) by about seven orders of magnitude. Complexation is significantly faster for the phosphonate ligand H4 L2 , probably due to the stronger coordination ability of the more basic phosphonate groups, which efficiently bind the metal ion in an “out‐of‐cage” complex and thus accelerate its “in‐cage” binding. The rate of CuII complexation by the phosphinate ligand H2 L1 is comparable to that of cyclam itself and its derivatives with non‐coordinating substituents. Acid‐assisted decomplexation of the copper(II) complexes is relatively fast (τ1/2=44 and 42 s in 1 M aq. HClO4 at 25 °C for H2 L1 and H4 L2 , respectively). This combination of properties is convenient for selective copper removal/purification. Thus, the title ligands were employed in the preparation of ion‐selective resins for radiocopper(II) separation. Glycidyl methacrylate copolymer beads were modified with the ligands through a diazotisation reaction. The separation ability of the modified polymers was tested with cold copper(II) and non‐carrier‐added 64Cu in the presence of a large excess of both nickel(II) and zinc(II). The experiments exhibited high overall separation efficiency leading to 60–70 % recovery of radiocopper with high selectivity over the other metal ions, which were originally present in 900‐fold molar excess. The results showed that chelating resins with properly tuned selectivity of their complexing moieties can be employed for radiocopper separation.  相似文献   

7.
A first step towards the microfabrication of a thin‐film array based on an organic/inorganic sensor hybrid has been realized. The inorganic microsensor part incorporates a sensor membrane based on a chalcogenide glass material (Cu‐Ag‐As‐Se) prepared by pulsed laser deposition technique (PLD) combined with an PVC organic membrane‐based organic microsensor part that includes an o‐xylyene bis(N,N‐diisobutyl‐dithiocarbamate) ionophore. Both types of materials have been electrochemically evaluated as sensing materials for copper(II) ions. The integrated hybrid sensor array based on these sensing materials provides a linear Nernstian response covering the range 1×10?6–1×10?1 mol L?1 of copper(II) ion concentration with a fast, reliable and reproducible response. The merit offered by the new type of thin‐film hybrid array includes the high selectivity feature of the organic membrane‐based thin‐film microsensor part in addition to the high stability of the inorganic thin‐film microsensor part. Moreover, the thin‐film sensor hybrid has been successfully applied in flow‐injection analysis (FIA) for the determination of copper(II) ions using a miniaturized home‐made flow‐through cell. Realization of the organic/inorganic thin‐film sensor hybrid array facilitates the development of a promising sophisticated electronic tongue for recognition and classification of various liquid media.  相似文献   

8.
Poly(hydroxamic acid) ligand was synthesized using ester functionalities of cellulose‐graft‐poly(methyl acrylate) copolymer, and products are characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, high‐resolution transmission electron microscopy, and X‐ray photoelectron spectroscopy analysis. The poly(hydroxamic acid) ligand was utilized for the sensing and removal of transition metal ions form aqueous solutions. The solution pH is found a key factor for the optical detection of metal ions, and the reflectance spectra of the [Cu‐ligand]n+ complex were observed to be the highest absorbance 99.5% at pH 6. With the increase of Cu2+ ion concentration, the reflectance spectra were increased, and a broad peak at 705 nm indicated that the charge transfer (π‐π transition) complex was formed. The adsorption capacity with copper was found to be superior, 320 mg g?1, and adsorption capacities for other transition metal ions were also found to be good such as Fe3+, Mn2+, Co3+, Cr3+, Ni2+, and Zn2+ were 255, 260, 300, 280, 233, and 223 mg g?1, respectively, at pH 6. The experimental data show that all metal ions fitted well with the pseudo‐second‐order rate equation. The sorption results of the transition metal ions onto ligand were well fitted with Langmuir isotherm model (R2 > 0.98), which implies the homogenous and monolayer character of poly(hydroxamic acid) ligand surface. Eleven cycles sorption/desorption process were applied to verify the reusability of this adsorbent. The investigation of sorption and extraction efficiency in each cycle indicated that this new type of adsorbent can be recycled in many cycles with no significant loss in its original detection and removal capability. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
By introducing carboxyl tag to the aromatic ligands system and borrowing the organic template open framework idea, a stable fluorescent Zn metal–organic framework was successfully prepared through a rigid ligand H6L (3,5‐bis‐(3‐carboxyphenoxy)benzoic acid) under hydrothermal conditions. The selectivity and sensitivity of the Zn‐MOF to metal ions and nitro‐aromatic compounds (NACs) were investigated by fluorescence quenching. And the Zn‐MOF showed a high sensibility of nitro‐aromatic compounds (NACs) and Fe3+ ions, especially for 4‐(4‐nitropheny lazo) resorcinol (NPLR). More importantly, the detection limit of the Zn‐MOF for detecting NPLR solution was found to be 1.71 ppb. Moreover, this sensor is remarkable recyclable and is promisingly applied for rapid, on‐site and sensing of explosive residuals.  相似文献   

10.
Using 2‐amino­methyl‐1H‐benz­imidazole as the ligand, a new thio­cyanate‐bridged copper(II) complex, namely bis(2‐aminomethyl‐1H‐benz­imidazole‐κ2N2,N3)­di­thio­cyanato­copper(II),[Cu(NCS)2(C8H9N3)], has been synthesized and structurally characterized. The Cu atom is five‐coordinated and exhibits a distorted square‐pyramidal geometry. The thio­cyanate ions (NCS) act as either bridging or terminal ligands. The bridging NCS ligands connect neighboring Cu atoms, constructing chains, while the terminal NCS ligands form hydrogen bonds with amine H atoms, leading to a complicated network.  相似文献   

11.
A stable film of poly(3‐octylthiophene)–dihydroxyanthraquinone sulfonate has been synthesized electrochemically in non‐aqueous solution. The incorporation of dihydroxyanthraquinone sulfonate as an anionic complexing ligand into poly(3‐octylthiophene) film during electropolymerization was achieved and copper ions were accumulated by reduction on the electrode surface. The presence of dihydroxyanthraquinone sulfonate during the electrochemical polymerization of 3‐octylthiophene is shown to impact the sensitivity and the stability of the organic conducting film electrode response. The electroanalysis of copper(II) ions using conducting polymer electrode was achieved by differential pulse anodic stripping voltammetry with remarkable selectivity. The analytical performance was evaluated and linear calibration graphs were obtained in the concentration range of 50–400 ng mL?1 copper(II) ion for 240 seconds accumulation time and the limit of detection was found to be 7.8 ng mL?1. To check the selectivity of the proposed stripping voltammetric method for copper(II) ion, various metal ions as potential interferents were tested. The developed method was applied to copper(II) determination in certified reference material, NWRI‐TMDA‐61, trace elements in fortified water.  相似文献   

12.
Benzothiazole moiety has gained a lot of attention because of its importance as essential pharmacophore in the development of metal based drugs. Nickel(II) and copper(II) complexes of a benzothiazole based ligand, 2,2’‐bibenzo[d]thiazole (L1), synthesized by the reaction of benzothiazole‐2‐carbonylchloride and o‐aminothiophenol, is reported. The compounds were characterised by elemental and percentage metal analyses, spectroscopic (FTIR and UV–vis), 1H and 13C NMR, Mass spectra, thermal, magnetic moment and molar conductance analyses. The mass spectra, elemental and percentage metal composition of the metal complexes gave a 2:1 ligand to metal stoichiometric mole ratio. The spectral data showed that the ligand was coordinated to the metal ions through the nitrogen atoms of the benzothiazole moiety. The electronic spectra and magnetic susceptibility measurements showed that the nickel and copper complexes adopted square planar geometries. The ligand and its metal(II) complexes were screened against some drug resistant microbes and were found to exhibit varied degree of antimicrobial activities. The nickel complex was more active compared to ciprofloxacin against Staphylococcus aureus and Bacillus cereus. Similarly, the antioxidant potential of the ligand was evaluated. The ligand is a better ferrous ion chelating agent compared to 1,10‐phenanthroline and 2,2‐bipyridine. The ligand and its complexes exhibited good antimicrobial and Fe2+ chelating properties making them probable compounds of interest in antibiotic and antioxidant drug researches.  相似文献   

13.
《中国化学会会志》2017,64(12):1510-1523
A heterocyclic Schiff base was prepared by condensing 3‐acetylcoumarin with 2‐amino‐3‐carboxyethyl‐4,5,6,7‐tetrahydrobenzo[b ]thiophene. Such Schiff bases derived from two different heterocyclic moieties are rare and expected to have properties surpassing those of either of the parent compounds in effectiveness of complex formation and biological activities. This ligand formed a series of complexes with manganese(II), cobalt(II), nickel(II), copper(II), and zinc(II) ions. The ligand and the metal complexes were characterized by various physicochemical and spectral studies. These included elemental analysis, molar conductance, magnetic susceptibility, as well as UV–vis, IR, 1H NMR, 13C NMR, and ESR spectral studies. The ESR spectral data adequately supported the covalent nature of the metal–ligand bonds. The ligand possessed a hexagonal crystal structure, but on complexation the crystallinity was lost. The fluorescence spectra of the ligand and its metal complexes in DMSO were also recorded. The ligand and the metal complexes were screened for their antimicrobial activities, and it was observed that the metal complexes are more active than the ligand. The α‐amylase inhibitory activity and the DNA cleavage activity of the ligand and the metal complexes were also examined. in vitro antitumor activity of the copper(II) complex was assayed against human cervical carcinoma cells (HeLa cell line), showing that the complex exhibited promising antitumor activity on the HeLa cell line.  相似文献   

14.
A simple and reliable method for the extraction and determination of trace amounts of copper(Ⅱ) ions using activated carbon (AC) impregnated by a new Schiff base 5-[(4-heptyloxyphenyl)azo]-N-(4-propyloxyphenyl)-salicylaldimine (HPPS) and atomic absorption spectrometry is presented. Recovery efficiency and the influence of pH value, volume of sample solution, effect of different eluents, and interfering ions were evaluated. The limit of detection (3σ) was 2.62 ng.mL^-1 and the relative standard deviation (n=10) was 1.5%. Under optimum conditions, the copper ions were concentrated 25 fold using 250 mL of sample solution and 10 mL of eluent. This procedure has been successfully applied to the determination of copper in different water samples.  相似文献   

15.
Copper is an indispensable trace element for human health. Too much or too little intake of copper ion (Cu2+) can lead to its own adverse health conditions. Therefore, detection of Cu2+ is always of vital importance. In this work, a simple sensor was developed for rapid detection of trace Cu2+ in water, in which L‐cysteine (Cys) as a molecular probe was self‐assembled on a gold interdigital electrode to form a monolayer for specific capture of Cu2+. The interfacial capacitance of interdigital electrode was detected to indicate the target adsorption level under an AC signal working as the excitation to induce directed movement and enrichment of Cu2+ to the electrode surface. This sensor reached a limit of detection of 4.14 fM and a satisfactory selectivity against eight other ions (Zn2+, Hg2+, Pb2+, Cd2+, Mg2+, Fe2+, As3+, and As5+). Testing of spiked tap water was also performed, demonstrating the sensor's usability. This sensor as well as the detection method shows a great application potential in fields such as environmental monitoring and medical diagnosis.  相似文献   

16.
The N‐functionalized macrocyclic ligand 2,13‐bis(1‐naphthalenylmethyl)‐5,16‐dimethyl‐2,6,13,17‐tetraazatricyclo(14,4,01.18,07.12)docosane (L3) and its copper(II) complex were prepared. The crystal structure of [Cu(L3)](ClO4)2·2CH3CN was determined by single‐crystal X‐ray diffraction at 150 K. The copper atom, which lies on an inversion centre, has a square planar arrangement and the complex adopts a stable trans‐III configuration. The longer distance [2.081(2) Å] for Cu–N(tertiary) compared to 2.030(3) Å for Cu–N(secondary) may be due to the steric effect of the attached naphthalenylmethyl group on the tertiary nitrogen atom. Two perchlorate ions are weakly attached to copper in axial sites and are further connected to the ligand of the cation through NH ··· O hydrogen bonds [N ··· O 3.098 Å]. IR and UV/Vis spectroscopic properties are also described.  相似文献   

17.
The two‐dimensional mixed‐ligand network catena‐[(μ‐4,4′‐bipyridine)‐bis(μ‐L‐tryptophanato‐κ3N,O,O′)‐diaqua‐dicopper(II) dinitrate] is constructed through the bridging action of both the tridentate amino carboxylato and the bidentate 4,4′‐bipyridine ligand. The enantiomeric L‐tryptophanato ligand acts as an N,O chelate towards one copper atom and bridges through the second carboxylate oxygen atom to the adjacent copper ion. Stacking of the corrugated nets creates channels which are occupied by the hydrogen‐bonded and very weakly Cu‐coordinating nitrate ions.  相似文献   

18.
Copper complexes of corroles have recently been a subject of keen interest due to their ligand non‐innocent character and unique redox properties. Here we investigated bis‐copper complex of a triply‐linked corrole dimer that serves as a pair of divalent metal ligands but can be reduced to a pair of trivalent metal ligands. Reaction of triply‐linked corrole dimer 2 with Cu(acac)2 (acac=acetylacetonate) gave bis‐copper(II) complex 2Cu as a highly planar molecule with a mean‐plane deviation value of 0.020 Å, where the two copper ions were revealed to be divalent by ESR, SQUID, and XPS methods. Oxidation of 2Cu with two equivalents of AgBF4 gave complex 3Cu , which was characterized as a bis‐copper(II) complex of a dicationic triply‐linked corrole dimer not as the corresponding bis‐copper(III) complex. In accord with this assignment, the structural parameters around the copper ions were revealed to be quite similar for 2Cu and 3Cu . Importantly, the magnetic spin–spin interaction differs depending on the redox‐state of the ligand, being weak ferromagnetic in 2Cu and antiferromagnetic in 3Cu .  相似文献   

19.
The reaction of Cu(NO3)2·3H2O with 2,4′‐oxybis(benzoic acid) and 4,4′‐bipyridine under hydrothermal conditions produced a new mixed‐ligand two‐dimensional copper(II) coordination polymer, namely poly[[(μ‐4,4′‐bipyridine‐κ2N ,N ′)[μ‐2,4′‐oxybis(benzoato)‐κ4O 2,O 2′:O 4,O 4′]copper(II)] monohydrate], {[Cu(C14H8O5)(C10H8N2)]·H2O}n , which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray diffraction. The X‐ray diffraction crystal structure analysis reveals that the CuII ions are connected to form a two‐dimensional wave‐like network through 4,4′‐bipyridine and 2,4′‐oxybis(benzoate) ligands. The two‐dimensional layers are expanded into a three‐dimensional supramolecular structure through intermolecular O—H…O and C—H…O hydrogen bonds. Furthermore, magnetic susceptibility measurements indicate that the complex shows weak antiferromagnetic interactions between adjacent CuII ions.  相似文献   

20.
《Electroanalysis》2006,18(21):2115-2120
A new type of voltammetric sensor, Langmuir–Blodgett film of p‐tert‐butylthiacalix[4]arene modified glassy carbon electrode, was advanced and used for determining copper at trace levels by differential pulse stripping voltammetry. Calibration plot was found to be linear in the range of 2×10?8 M to 5×10?6 M; the detection limit was 2×10?9 M. Possible recognition mechanism was also discussed. From determination of Copper in real samples (river, lake and tap water) it can be concluded that the method is rapid, sensitive in determining of copper and can be used in the analysis of natural water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号