首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the lower critical solution temperature phase separation of poly(vinyl methyl ether) aqueous solutions, the process corresponding to the weakening of the hydrogen bond interaction with increasing temperature is dominant and occurs over the entire concentration region of solutions and over a broad temperature range from 30 to 41°C, giving rise to the energetic enthalpic effect during phase separation, while the conformational change, that is, collapse of the swollen polymer coils, occurs only in the swelling polymer solution when the water concentration is above 38.3 wt %, giving rise to the entropic effect during phase separation. In addition, the entropic process corresponding to the collapse of the polymer coils occurs in a much narrow theta temperature range from 35.5 to 37°C. If the solution is held at a constant temperature for a sufficiently long time, 90% collapse of the polymer coils occurs in only the 0.5 °C temperature region between 35.5 and 36°C. Accordingly, in the enthalpic process, the most dramatic blueshift of the νC‐O bond peak occurs in the temperature range between 35 and 41°C, while this blueshift is only approximately 2 cm?1 in the temperature range from 30 to 35°C, prior to the collapse of the polymer coils due to the entropic effect. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 323–330  相似文献   

2.
Understanding the conformational changes of polymeric chains in solutions is an essential and integral part of polymer physics. By increasing the concentration of polymer solutions from dilute to semidilute regime, the critical chain overlapping has been reported at the concentration termed as C*. In this study, the associated inter‐ and intrachain conformational transitions in polystyrene (PS) solutions are reported. By comparing the spectroscopic intensity ratio versus concentration for an intrachain PS system, a break point was observed in good solvent which coincided with the theoretically predicted C*. Moreover, the intrachain conformation showed no obvious change below C*, while significant collapse started to occur above C*. This result reveals a new insight in polymer physics, since traditionally the size of polymer chains is considered to decrease weakly regarding the concentration change in the semidilute regime. It is important to find such an abrupt intrachain conformational transition between the dilute and semidilute solutions and provide the first experimental observation that inter‐ and intrachain conformational transitions are correlated to one the other. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1373–1379  相似文献   

3.
Polymer‐solvent compound formation, occurring via co‐crystallization of polymer chains and selected small‐molecular species, is demonstrated for the conjugated polymer poly(9,9‐dioctylfluorene) (PFO) and a range of organic solvents. The resulting crystallization and gelation processes in PFO solutions are studied by differential scanning calorimetry, with X‐ray diffraction providing additional information on the resulting microstructure. It is shown that PFO‐solvent compounds comprise an ultra‐regular molecular‐level arrangement of the semiconducting polymer host and small‐molecular solvent guest. Crystals form following adoption of the planar‐zigzag β‐phase chain conformation, which, due to its geometry, creates periodic cavities that accommodate the ordered inclusion of solvent molecules of matching volume. The findings are formalized in terms of nonequilibrium temperature–composition phase diagrams. The potential applications of these compounds and the new functionalities that they might enable are also discussed. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1481–1491  相似文献   

4.
Two novel poly(p‐phenylene vinylene) polymers, which carried side substituents with cyano groups or 1,3,4‐oxadiazole, were synthesized by Heck coupling. They consisted of alternating conjugated segments and nonconjugated aliphatic spacers. The polymers had moderate molecular weights, were amorphous, and dissolved readily in tetrahydrofuran and halogenated organic solvents. They were stable up to approximately 340 °C in N2 and 290 °C in air, and the anaerobic char yield was around 60% at 800 °C. The polymer with cyano side groups emitted blue light in solutions and thin films with identical photoluminescence (PL) maximum at 450 nm; this supported the idea that chain interactions were hindered even in the solid state. The PL maximum of this polymer in thin films was blueshifted upon annealing at 120 °C, indicating a thermochromic effect as a result of conformational changes in the polymer backbone. The polymer containing side substituents with oxadiazole rings emitted blue light in solutions with a PL maximum at 474 nm and blue‐greenish light in thin films with a PL maximum at 511 nm. The PL quantum yields of the polymers in tetrahydrofuran were 0.13–0.24. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1768–1778, 2004  相似文献   

5.
In the present article, we investigate by differential scanning calorimetry (DSC) the thermal behavior (melting, crystallization, and crystal–crystal transitions) far from equilibrium of blends constituted of two crystalline polymers. In particular, the following blends are examined: PTFE–PFMVE, PTFE–FEP, and FEP–PFMVE where PTFE is poly(tetrafluoroethylene), PFMVE is poly(tetrafluoroethylene‐co‐perfluoromethylvinylether), and FEP is poly(tetrafluoroethylene‐co‐hexafluoropropylene). The two last ones are random tetrafluoroethylene copolymers with small amounts of comonomer. Our results indicate that, under the experimental investigated conditions, the blends containing PTFE do not give cocrystallization on cooling from the melt, although under very rapid crystallization conditions, quenching, the presence of the copolymer would seem to slightly influence PTFE crystallization (lower peak temperatures are observed for the crystalline transitions and the melting with respect to those of the neat homopolymer). The behavior of the FEP–PFMVE blend is completely different; in fact, our results indicate the occurrence of cocrystallization, then miscibility in the crystalline phase, for almost all compositions and all investigated experimental conditions. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 679–689, 1999  相似文献   

6.
We present simulation results for the phase behavior of a single chain for a flexible lattice polymer model using the Wang-Landau sampling idea. Applying this new algorithm to the problem of the homopolymer collapse allows us to investigate not only the high temperature coil–globule transition but also an ensuing crystallization at lower temperature. Performing a finite size scaling analysis on the two transitions, we show that they coincide for our model in the thermodynamic limit corresponding to a direct collapse of the random coil into the crystal without intermediate coil–globule transition. As a consequence, also the many chain phase diagram of this model can be predicted to consist only of gas and crystal phase in the limit of infinite chain length. This behavior is in agreement with findings on the phase behavior of hard-sphere systems with a relatively short-ranged attractive square well. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2542–2555, 2006  相似文献   

7.
8.
Non‐isothermal ultra‐fast cooling crystallization tests were conducted on three blown film grade bimodal high density polyethylene (HDPE) resins using a fast differential scanning calorimeter, the Flash DSC. Non‐isothermal tests were performed at cooling rates between 50 and 4000°K/s, and the data were analyzed using the modified Avrami model by Jeziorny (Polymer, 1978 , 19, 1142). Non‐isothermal data were used to propose a new method named crystallization–time–temperature–superposition, and the two activation energies were obtained for each of the resins. This is very useful for obtaining theoretical crystallization kinetics data at different cooling rates, allowing its use in ultra‐fast cooling polymer processes such as blown film. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1822–1827  相似文献   

9.
Previous approaches used to decorate latently reactive conjugated polymer‐coated carbon nanotube complexes have utilized “grafting‐to” strategies. Here, we coat the carbon nanotube surface with a conjugated polymer whose side chains contain the radical initiator, α‐bromoisobutyrate, which enables atom transfer radical polymerization (ATRP) from the polymer–nanotube surface. Using light to generate Cu(I) in situ, ATRP is used to grow narrow dispersity polymer chains from the polymer–nanotube surface. We confirm the successful polymerization of (meth)acrylates from the polymer–nanotube surface using a combination of gel permeation chromatography and infrared spectroscopy. Strikingly, we demonstrate that nanotube optoelectronic properties are preserved after radical‐mediated polymer grafting using Raman spectroscopy and photoluminescence mapping. Overall, this work elucidates a method to grow narrow dispersity polymer chains from the polymer–nanotube surface using light‐driven radical chemistry, with concurrent preservation of nanotube optoelectronic properties. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2015–2020  相似文献   

10.
The effect of glassy skin formation on the drying of semicrystalline polymers was investigated with a comprehensive mathematical model developed for multicomponent systems. Polymers with high glass‐transition temperatures can become rubbery at room temperature under the influence of solvents. As the solvents are removed from the polymer, a glassy skin can form and continue to develop. The model takes into account the effects of diffusion‐induced polymer crystallization as well as glassy–rubbery transitions on the overall solvent content and polymer crystallinity. A Vrentas–Duda free‐volume‐based diffusion scheme and crystallization kinetics were used in our model. The polymer–solvent system chosen was a poly(vinyl alcohol) (PVA)–water–methanol system. The drying kinetics of PVA films were obtained by gravimetric methods with swollen films with known water/methanol concentrations. The overall drying behaviors of the polymer system determined by our model and experimental methods were compared and found to match well. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3191–3204, 2005  相似文献   

11.
The first synthesis of the fully conjugated ethynylene‐linked polymer incorporating boron dipyrrine complex (BODIPY) and zinc porphyrin in the main chain was performed based on the exclusive Sonogashira polycondensation. Comprehensive experimental and theoretical investigations lead to an elaborate synthetic route to circumvent the possible side reactions of BODIPY in the presence of the palladium catalyst. Additionally, optimization of the synthetic conditions found that dichloromethane as the solvent suppresses the formation of the pseudo‐trans dimer of the copper acetylide and mitigates the undesired oxidative homocoupling reaction. Eventually, the exclusive Sonogashira polycondensation in dichloromethane provided the alternating BODIPY–porphyrin ethynylene‐conjugated polymer, which displayed absorption up to the near‐infrared wavelengths. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2457–2465  相似文献   

12.
Liquid–liquid thermally induced phase separation of the polymer‐diluent system of poly(ethylene‐co‐vinyl alcohol) (EVOH)‐glycerol was examined under light scattering. For EVOH with an ethylene content of 38 mol % (EVOH38), maxima of the scattered light intensity were observed that indicated that phase separation occurred by the spinodal decomposition (SD). The growth of the structures formed by the general liquid–liquid phase separation obeyed a power‐law scaling relationship in SD. For EVOH with an ethylene content of 32 mol % (EVOH32), the liquid–liquid phase separation resulted from the polymer crystallization. In this case, the structure growth showed the characteristic behavior in which the crystalline particles were initially formed, and then the droplets formed by the liquid–liquid phase separation induced by the crystallization grew rapidly. Furthermore, the growth of the droplet by the phase separation was followed by an optical microscope measurement at a constant cooling rate. The phase‐separated structure formed after the crystallization can grow faster than that formed by the normal liquid–liquid phase separation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 194–201, 2003  相似文献   

13.
Poly(9,9‐dioctylfluorene) (PFO) is a widely studied blue‐emitting conjugated polymer, the optoelectronic properties of which are strongly affected by the presence of a well‐defined chain‐extended “β‐phase” conformational isomer. In this study, optical and Raman spectroscopy are used to systematically investigate the properties of PFO thin films featuring a varied fraction of β‐phase chain segments. Results show that the photoluminescence quantum efficiency (PLQE) of PFO films is highly sensitive to both the β‐phase fraction and the method by which it was induced. Notably, a PLQE of ~69% is measured for PFO films possessing a ~6% β‐phase fraction induced by immersion in solvent/nonsolvent mixtures; this value is substantially higher than the average PLQE of ~55% recorded for other β‐phase films. Furthermore, a linear relationship is observed between the intensity ratios of selected Raman peaks and the β‐phase fraction determined by commonly used absorption calibrations, suggesting that Raman spectroscopy can be used as an alternative means to quantify the β‐phase fraction. As a specific example, spatial Raman mapping is used to image a mm‐scale β‐phase stripe patterned in a glassy PFO film, with the extracted β‐phase fraction showing excellent agreement with the results of optical spectroscopy. © 2016 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1995–2006  相似文献   

14.
We synthesized through‐space conjugated polymers with [2.2]paracyclophane and thieno[3,4‐b]pyrazine units in the main chain by the Sonogashira–Hagihara coupling reaction. The obtained polymers were soluble in common organic solvents, and homogeneous thin films were readily obtained from the polymer solutions by spin‐coating techniques. The polymers exhibited the extension of the conjugation length via the through‐space interaction. The polymers showed orangish‐red emission with peak maxima of around 610 nm in diluted solutions and their thin films, which were derived from the thieno[3,4‐b]pyrazine moieties. The optical and electrochemical behaviors of the polymers containing pseudo‐para‐ and pseudo‐ortho‐linked [2.2]paracyclophane were identical. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

15.
Solution‐crystallization is studied for two polyfluorene polymers possessing different side‐chain structures. Thermal analysis and temperature‐dependent optical spectroscopy are used to clarify the nature of the crystallization process, while X‐ray diffraction and scanning electron microscopy reveal important differences in the resulting microstructures. It is shown that the planar‐zigzag chain conformation termed the β‐phase, which is observed for certain linear‐side‐chain polyfluorenes, is necessary for the formation of so‐called polymer‐solvent compounds for these polymers. Introduction of alternating fluorene repeat units with branched side‐chains prevents formation of the β‐phase conformation and results in non‐solvated, i.e. melt‐crystallization‐type, polymer crystals. Unlike non‐solvated polymer crystals, for which the chain conformation is stabilized by its incorporation into a crystalline lattice, the β‐phase conformation is stabilized by complexation with solvent molecules and, therefore, its formation does not require specific inter‐chain interactions. The presented results clarify the fundamental differences between the β‐phase and other conformational/crystalline forms of polyfluorenes. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1492–1506  相似文献   

16.
Azobenzene switches its structure instantaneously by reversible trans‐to‐cis and cis‐to‐trans photoisomerization with light irradiations. Dynamic change in polymer structure is expected via introducing an azobenzene unit into the main chain. In this study, a set of methyl‐substituted azobenzene–carbazole conjugated copolymers is synthesized by the Suzuki–Miyaura coupling method. Introduction of methyl substituents to the azobenzene unit of the monomer, and polymerization in a high‐boiling solvent improve the molecular weight of the polymer. Decrease of effective conjugation length due to the twisted structure of the main chain allows progress of photoisomerization. The microstructure of the polymer was determined with grazing incidence X‐ray diffraction (GIXD) measurements using synchrotron radiation. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1756–1764  相似文献   

17.
We present a study of isotropic and uniaxially oriented binary blend films comprising ≤1 wt % of the conjugated polymer poly(9,9‐dioctylfluorene) (PFO) dispersed in both ultra‐high molecular weight (UHMW) and linear‐low‐density (LLD) polyethylene (PE). Polarized absorption, fluorescence and Raman spectroscopy, scanning electron microscopy, and X‐ray diffraction are used to characterize the samples before and after tensile deformation. Results show that blend films can be prepared with PFO chains adopting a combination of several distinct molecular conformations, namely glassy, crystalline, and the so‐called β‐phase, which directly influences the resulting optical properties. Both PFO concentration and drawing temperature strongly affect the alignment of PFO chains during the tensile drawing of the blend films. In both PE hosts, crystallization of PFO takes place during drawing; the resulting ordered chains show optimal optical anisotropy. Our results clarify the PFO microstructure in oriented blends with PE and the processing conditions required for achieving the maximal optical anisotropy. © 2014 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 22–38  相似文献   

18.
The electronic performance of conjugated polymers depends on the microstructure of the polymer films. A percolated network morphology with high crystallinity, ordered intermolecular packing and long‐range order is beneficial for charge transport. In recent reports, some conjugated polymers have been shown to exhibit liquid crystallinity. The appearance of liquid crystalline ordering provides a new solution to solve the difficulties in microstructure manipulation. In this review, we summarize how liquid crystallinity can assist molecular arrangement and guide long‐range orientation during film processing, leading to high charge mobility. We expect that this article could draw more attention to the liquid crystallinity of conjugated polymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1572–1591  相似文献   

19.
The crystallization‐dominated and microphase separation/crystallization‐coexisted structure of the all‐conjugated diblock copolymers poly(2,5‐dihexyloxy‐p‐phenylene)‐block‐(3‐hexylthiophene) (PPP‐b‐P3HT, denoted as BmTn) with different block compositions was affected by the aggregation state of the diblock copolymers in solvents with different solubilities. For B34T66, B62T38, and B75T25, the coexistence of microphase separation and crystallization was obtained in good solvent with few crystalline aggregates. For B34T66 with a longer P3HT block, densely stacked fiber crystal structures in thin films were found by using marginal solvents with crystalline aggregations in solutions. As for B62T38 and B75T25 with shorter P3HT block and longer PPP block, crystal structures were obtained by the use of solvents with a much larger solubility difference of the two blocks. Thus, microphase‐separated structures are prone to form from solutions with coil conformation and fiber crystals from solutions with larger aggregates, which resulted in the increased crystallinity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1718–1726  相似文献   

20.
A model for simulating the charge transport properties of semicrystalline polymer (SCrP) using Monte Carlo simulation is reinvented. The model is validated by reproducing the experimentally observed field and temperature dependence of mobility in Poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) thin films. This study also provides a new physical insight to the origin of much debated negative field dependence of mobility (NFDM) observed at low electric field strengths in P3HT thin films. The observed NFDM, which is not explainable with the mechanisms proposed earlier, is attributed to the weak dependence of transit time on the applied electric field strengths. In the semicrystalline films, the charge transport takes place mostly through the crystalline regions, in which the charge transport is weakly dependent on the strength of the applied electric field. In addition, a possible explanation for the origin of Arrhenius temperature dependence of mobility (lnμ ∝ 1/T) commonly observed in SCrP thin films is also proposed. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 137–141  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号