首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A novel surface modification method for titania nanoparticles is provided via the surface‐initiated photocatalytic polymerization with the aid of acrylic acid (AA) or sodium styrene sulfonate (NaSS). The properties of modified titania nanoparticles are investigated with aqueous electrophoresis measurements, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Then the modified titania is used as Pickering stabilizer for further polymerization and the morphology of the resulted polymer microspheres is characterized by TEM and field‐emission scanning electron microscopy. It is proven that the addition of AA or NaSS for the surface‐initiated polymerization can obviously affect the structure and morphology of the final polymer composite microspheres. The formation mechanism of several kinds of polymer particles is also proposed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
This article reports a facile controllable approach to prepare monodisperse nonspherical colloidal particles with cavity structures by one‐pot soap‐free emulsion polymerization of styrene (St), 3‐(trimethoxysilyl)propyl methacrylate (MPS), and acrylic acid (AA). In our strategy, only by varying the feeding time of AA to the as‐polymerized St and MPS, the nonspherical latex particles with single cavity of different surface roughness and multicavity structures could be successfully synthesized. The depth and width of the cavity can be also easily controlled by adjusting the amount of MPS and AA. A possible formation mechanism is proposed on the basis of experimental results. These nonspherical colloidal particles, which have controllable cavity structures, are good building blocks or templates for the construction of functional coating and complex colloidal architectures. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1645–1652  相似文献   

3.
A monomer of the AB‐type and a bifunctional comonomer of the AA‐type containing two 2‐oxazoline rings and a biphenyl structural unit were prepared from the corresponding carboxylic acids via their esterification and subsequent amidation with an aminoalcohol. The cyclization of an amide to 2‐oxazoline structure was achieved by treatment with thionyl chloride followed by liberation of the free base with sodium hydrocarbonate in an aqueous solution. The prepared monomers were used for the polyaddition polymerization of the AB‐type monomer having a 2‐oxazoline and phenol group bound on adjacent rings of the biphenyl structure in solution. The monomer of the AA‐type was used for AA+BB‐type polyaddition reactions with aliphatic dicarboxylic acids. Both types of polymerizations have been performed in melt and in solution. The structures of the polymers were determined, and the thermal properties of the polymers were evaluated. Liquid‐crystalline (LC) structures of the prepared polymers were observed by DSC measurements and optical microscopy. The polyaddition reactions of the monomers containing a 2‐oxazoline ring and a biphenyl unit represent a new efficient way for the preparation of a biphenyl unit containing poly(ether amide)s and poly(ester amide)s. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
An aqueous reversible‐deactivation radical polymerization (RDRP) approach is used to synthesize sodium polystyrene sulfonate directly from functionalized monomers to give uniformly and completely sulfonated materials. Reproducible gram scale syntheses are achieved under simple one pot reaction conditions at ambient temperatures, and full monomer conversions are achieved within approximately 3 h. Reaction variables such as pH, sodium chloride concentration, and methanol cosolvent have a significant effect on the molecular weights (Mn ≈ 20,000–400,000 g·mol?1) obtained by gel permeation chromatography coupled multiangle light scattering. Observed dispersities were reasonably narrow: Ð ≈ 1.05–1.3. A parametric optimization, rather than direct variation of the monomer to initiator ratio, resulted in some of the highest molecular weight polymers by an RDRP approach. Linear progression between Mn and monomer conversion occurs at a neutral reaction pH, which results in narrow polymer molecular weight distributions, along with high end‐group fidelity as demonstrated with chain extension reactions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1527–1537  相似文献   

5.
Acrylic acid (AA) is used in many emulsion polymerization formulations to improve the colloidal stability of the latex product. The improved stability originates from electrostatic repulsion complemented with steric repulsion. The strength of the electrostatic and steric repulsion forces in a styrene (S)/AA copolymer latex was investigated at different pH values, electrolyte concentrations, and temperatures. A comparison was made with an S homopolymer latex. Transmission electron microscopic pictures, combined with visual inspections, provided understanding of the mechanisms leading to coagulation in polystyrene (PS)/AA copolymer latices. Colloidal stability of the unswollen sodium dodecyl sulfate stabilized PS latex is based on electrostatic repulsion. Destabilization by sodium chloride resulted in aggregation. The acidic PS/AA latex remained stable against aggregation at high electrolyte concentrations because of steric repulsion. The acidic PS/AA latex showed a strong tendency to flocculate at increasing electrolyte concentrations. Flocculation was not observed for high‐pH PS/AA latices at high electrolyte concentrations. Steric repulsion of the acid PS/AA latex was lost at temperatures higher than the critical coagulation temperature (35 °C), and flocculation was followed by aggregation and coalescence. The high‐pH PS/AA latex was stable even at high electrolyte concentrations and temperatures up to 80 °C because of strong electrosteric stabilization. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2985–2995, 2003  相似文献   

6.
This article presents the results of capillary break‐up extensional rheometer experiments conducted for semidilute solutions of carboxymethylcellulose sodium salt (Na‐CMC) with degrees of substitution (DS) ranging from 0.62 to 1.04 in distilled water and propylene glycol (PG)/water mixtures. The partial aggregation of Na‐CMC chains with DS < 1 observed in aqueous solutions triggers an increase in apparent extensional viscosity and extension of break‐up time. The rheological properties of Na‐CMC solutions in propylene glycol/water mixture are determined by the solubility of the polymer and the physical crosslinking of chains. The disappearance of the elasto‐capillary regime during the filament thinning of Na‐CMC solutions with DS < 1 in propylene glycol/water mixture was linked to the physical crosslinking of polymer chains. The shape of the extensional viscosity curve for Na‐CMC solutions with DS = 1.04 in PG/water mixture was characteristic for semidilute polymer solutions with a low number of entanglements. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1537–1547  相似文献   

7.
Differing from the moisture‐sensitive α‐amino acid N‐carboxyanhydrides (AA‐NCAs) monomers, N‐phenoxycarbonyl α‐amino acids (AA‐NPCs) can be prepared and stored in open air. In this contribution, we report that the controlled polymerizations of AA‐NPC monomers of Otert‐butyl‐dl ‐serine (BRS‐NPC), Nε‐benzyloxycarbonyl‐l ‐lysine (ZLL‐NPC) and Nε‐trifluoroacetyl‐l ‐lysine (FLL‐NPC) initiated by amines are surprisingly able to tolerate common nucleophilic impurities such as water and alcohols at a level of monomer concentration. The structures of polypeptides synthesized in the presence of water or alcohols agree well with the designed ones in the case of repeated chain extensions. Detailed mechanism study and density functional theory calculation reveal that the low concentration of AA‐NCA and the high activity of amines are the key factors to the controllability of AA‐NPC polymerizations. The water‐ and alcohol‐tolerant property in polymerizations of AA‐NPCs encourages the following studies on unprotected (phenolic) hydroxyl groups containing AA‐NPCs. The controllable polymerizations of N‐phenoxycarbonyl l ‐tyrosine (LT‐NPC) and N‐phenoxycarbonyl S‐(3‐hydroxypropyl)‐l ‐cysteine (HLC‐NPC) initiated by amines are confirmed and reported for the first time, which extends the library of AA‐NPCs and polypeptides as well. All the universality of library, the convenience of monomer preparation, and the controllability and water‐ and alcohol‐tolerant property of polymerization of AA‐NPCs significantly enhance the feasibility of polypeptide synthesis, making AA‐NPC approach a promising synthetic method of polypeptides. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 907–916  相似文献   

8.
A simple and scalable method for the preparation of N-Cbz protected amino acids is presented which uses a mixture of aqueous sodium carbonate and sodium bicarbonate to maintain the appropriate pH during the addition of benzyl chloroformate. The method has been extended to other N-protections and is amenable to large scale preparation of an intermediate toward Zofenopril, an ACE inhibitor.  相似文献   

9.
The present article reports metal free acid‐mediated polymerization of 3,4‐alkylenedioxythiophenes in a solvent free medium and processability of insoluble polymers. It also describes structural variants and functional aqueous dispersions based on 3,4‐alkylenedioxythiophenes. Polymers were processed by dispersing the insoluble polymer powders in aqueous media using polymeric aromatic surfactant (polystyrenesulfonate, PSS) and aliphatic surfactant (sodiumdodecylsulfonate, SDS), respectively. The effect of surfactant on particle size, stability, and conductivity of the dispersions was investigated in detail. Polymer particles in SDS‐based dispersions tend to agglomerate which resulted enhanced conductivity of the thin films. Electrochemical studies revealed that the polymers are electroactive in nature and are transparent in oxidized state. The electrochromic contrast between the oxidized and reduced states of the polymers was in the range of 40–46%. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 783–791  相似文献   

10.
A simple method for nanocrystalline cellulose (NCC)/fluorinated polyacrylate was developed by RAFT‐mediated surfactant‐free emulsion polymerization, in which the nanocomposites formed a core‐shell spherical morphology. The influence of the content of NCC‐g‐(PAA‐b‐PHFBA) (AA was acrylic acid, HFBA was hexafluorobutyl acrylate) on the properties of latex and film were systematically studied. The monomer conversion, the tensile strength, and water–oil repellency of film increased first and then decreased, the latex particle size decreased first and then decreased, when the content of NCC‐g‐(PAA‐b‐PHFBA) increased from 1 to 6 wt %. Elongation at break and thermal stability distinctly decreased when the content of NCC‐g‐(PAA‐b‐PHFBA) gradually increased. XPS showed that the fluorine‐containing groups well concentrated at the film–air interfaces during the annealing process. SEM analysis revealed that the treated fiber had a rugged surface, and the treated fabric had an excellent water repellency. In addition, this green grafting method in water offered a new perspective for the fabrication of exceptional NCC‐based nanocomposites with NCC as the core and also helped to promote the potential applicability of NCC in a range of multipurpose applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1305–1314  相似文献   

11.
This article describes the syntheses of various functional star‐shaped polymers via monomer‐selective living cationic polymerization of a vinyl ether (VE) and a divinyl compound with alkoxystyrene moieties by a one‐shot method. An aqueous solution of the resulting star‐shaped polymers with oxyethylene pendants exhibits thermally induced phase separation behavior. To achieve domino synthesis from various monomers, we investigated the optimum reactivity difference using a functional VE and a monofunctional alkoxystyrene. Moreover, the one‐shot copolymerization of a bifunctional VE and an alkoxystyrene is also conducted to yield a star‐shaped polymer via the core‐first method. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2166–2174  相似文献   

12.
Carboxyl‐functionalized polyhedral oligomeric silsesquioxane (SQ; POSS‐COOH ) was successfully prepared by a structural transformation reaction, that is, a process of heating and concentrating soluble carboxyl‐functionalized rod‐like polySQ (PolySQ ‐COOH ) using the aqueous superacid trifluoromethanesulfonic acid (HOTf) as the catalyst and solvent. The obtained POSS‐COOH was a mixture of a cage‐like decamer (T10‐POSS), which was the main product, and an octamer (T8‐POSS) and a dodecamer (T12‐POSS), which were the minor products. The product obtained by heating and concentrating PolySQ‐COOH using aqueous hydrochloric acid (HCl) as the catalyst and solvent was soluble polySQ rather than POSS. For comparison, heating and concentrating POSS‐COOH in aqueous HOTf and HCl were performed, which yielded POSS‐COOH and PolySQ‐COOH , respectively. Based on these results, the process of heating and concentrating each starting material ( PolySQ‐COOH and POSS‐COOH ) in aqueous HOTf afforded POSS‐COOH , and a similar process in aqueous HCl yielded PolySQ‐COOH . © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2511–2518  相似文献   

13.
Poly(acrylic acid‐co‐sodium acrylate)/zinc oxide, P(AA‐SA)/ZnO, composite latex particles were synthesized by inverse miniemulsion polymerization. The ZnO nanoparticles were prepared by hydrothermal synthesis and undergone oleic acid (OA) surface treatment. The X‐ray diffraction pattern and FT‐IR spectra characterized the crystal structure and functional groups of OA‐ZnO nanoparticles. An appropriate formulation in preparing P(AA‐SA) latex particles, ensuring the dominant in situ particle nucleation and growth, was developed in our experiment first. Sodium hydroxide was chosen as a costabilizer, because of its ability to increase the deprotonation of acylic acid and enhance the hydrophilicity of monomer, acrylic acid besides providing osmotic pressure. The growth mechanism of P(AA‐SA)/ZnO composite particles was proposed. The OA‐ZnO nanoparticles were adsorbed on or around the surface of P(AA‐SA) latex particles by hydrophobic interaction, thus enhanced the interfacial tension over latex particles. The P(AA‐SA)/ZnO composite latex particles owned better thermal stability than pure latex particles. The pH regulation capacity was excellent for both ZnO and P(AA‐SA) particles. Combining P(AA‐SA) and ZnO nanoparticles into composite particles, the performance in pH regulation and UV shielding was discussed from our experimental results. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8081–8090, 2008  相似文献   

14.
The behavior of a mixture of negatively charged cellulose nanocrystals (CNCs) and positively charged poly(allylamine) (PAAm) is examined in aqueous media. By modulating the pH, the acting Coulomb forces can be varied that can lead not only to adsorption of PAAm chains on the CNC surface but also to the development of a supermolecular structure by bridging of CNC rods by extended PAAm chains. This bridging can result in the formation of CNC clusters, which was demonstrated experimentally. Light scattering and rheological studies showed that these clusters begin to grow and merge, ultimately forming a global percolated network above a critical degree of PAAm ionization. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1527–1536  相似文献   

15.
Monobrominated polystyrene (PSBr) was prepared by ATRP, and the resulting chain ends were activated in the presence of radical traps to induce chain end‐coupling. In atom transfer radical coupling (ATRC) with radical trap assistance, to achieve significant coupling requires excess metal catalyst, ligand, and a reducing agent that is often additional metal. In this work, activators generated by electron transfer (AGET) and radical trap assistance are used in the ATRC sequence to successfully lead to chain‐end coupling without the need for the oxidatively unstable copper (I) and with environmentally friendlier agents in place of copper metal. High extents of coupling (Xc) were achieved using ascorbic acid (AA) as the reducing agent and copper(II) bromide as the oxidized version of the catalyst, and when combined with AGET ATRP to prepare the PSBr precursor, only a fraction of the total metal was required compared to traditional atom transfer reactions, while still retaining similar Xc values. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2113–2120  相似文献   

16.
A series of environmentally sensitive ABA triblock copolymers with different block lengths were prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization from acrylic acid (AA) and N‐isopropylacrylamide (NIPAAm). The GPC and 1H NMR analyses demonstrated the narrow molecular weight distribution and precise chemical structure of the prepared P(AA‐b‐NIPAAm‐b‐AA) triblock copolymers owing to the controlled/living characteristics of RAFT polymerization. The lower critical solution temperature (LCST) of the triblock copolymers could be tailored by adjusting the length of PAA block and controlled by the pH value. Under heating, the triblock copolymers underwent self‐assemble in dilute aqueous solution and formed nanoparticles revealed via TEM images. Physically crosslinked nanogels induced by inter‐/intra‐hydrogen bonding or core‐shell micelle particles thus could be obtained by changing environmental conditions. With a well‐defined structure and stimuli‐responsive properties, the P(AA‐b‐NIPAAm‐b‐AA) copolymer is expected to be employed as a nanocarrier for biomedical applications in controlled‐drug delivery and targeting therapy. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1109–1118  相似文献   

17.
Acrylic acid (AA)-based superabsorbent interpenetrated with sodium poly(vinyl alcohol) (PVA) sulfate (SPS) was prepared by inverse-emulsion polymerization. The disperse phase was prepared by dissolving AA and crosslinking monomer in aqueous SPS solution. Toluene was used as the continuous phase in which oil-soluble initiator and emulsifiers were dissolved. Sorbitan monooleate and ethyl cellulose were used as emulsifiers. The maximum water and saline absorbencies were 5041 and 211.4 g/g, respectively.  相似文献   

18.
Comb‐like amphiphilic poly(poly((lactic acid‐co‐glycolic acid)‐block‐poly(ethylene glycol)) methacrylate (poly((PLGA‐b‐PEG)MA)) copolymers were synthesized by radical polymerization. (PLGA‐b‐PEG)MA macromonomer was prepared by ring‐opening bulk polymerization of DL ‐lactide and glycolide using purified poly(ethylene glycol) monomethacrylate (PEGMA) as an initiator. (PLGA‐b‐PEG)MA macromonomer was copolymerized with PEGMA and/or acrylic acid (AA) by radical polymerization to produce comb‐like amphiphilic block copolymers. The molecular weight and chemical structure were investigated by GPC and 1H NMR. Poly((PLGA‐b‐PEG)MA) copolymer aqueous solutions showed gel–sol transition behavior with increasing temperature, and gel‐to‐sol transition temperature decreased as the compositions of the hydrophilic PEGMA and AA increased. The gel‐to‐sol transition temperature of the terpolymers of the poly((PLGA‐b‐PEG)MA‐co‐PEGMA‐co‐AA) also decreased when the pH was increased. The effective micelle diameter obtained from dynamic light scattering increased with increasing temperature and with increasing pH. The critical micelle concentration increased as the composition of the hydrophilic monomer component, PEGMA and AA, were increased. The spherical shape of the hyperbranched polymers in aqueous environment was observed by atomic force microscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1954–1963, 2008  相似文献   

19.
Bimolecular termination in nitroxide‐mediated radical polymerization in miniemulsion has been investigated through the heating of a polystyrene–2,2,6,6‐tetramethylpiperidinyl‐1‐oxy macroinitiator and its 4‐hydroxy‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy analogue in an aqueous toluene dispersion with sodium dodecyl benzenesulfonate as a surfactant at 125 °C. The level of bimolecular termination by combination, evaluated from the high‐molecular‐weight shoulder, was higher in miniemulsion than in solution and increased with decreasing particle size. Quantitative analysis revealed that these results cannot be rationalized solely by nitroxide partitioning to the aqueous phase. The results are explained by an interface effect, by which nitroxide is adsorbed or located at the aqueous–organic interface. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4995–5004, 2007  相似文献   

20.
A convenient and industrially scalable method for synthesis of homogeneous nanocomposite films comprising poly(styrene‐stat‐butyl acrylate) and nanodimensional graphene oxide (GO) or reduced GO (rGO) is presented. Importantly, the nanocomposite latex undergoes film formation at ambient temperature, thus alleviating any need for high temperature or high pressure methods such as compression molding. The method entails synthesis of an aqueous nanocomposite latex via miniemulsion copolymerization relying on nanodimensional GO sheets as sole surfactant, followed by ambient temperature film formation resulting in homogeneous film. For comparison, a similar latex obtained by physical mixing of a polymer latex with an aqueous GO dispersion results in severe phase separation, illustrating that the miniemulsion approach using GO as surfactant is key to obtaining homogeneous nanocomposite films. Finally, it is demonstrated that the GO sheets can be readily reduced to rGO in situ by heat treatment of the film. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2289–2297  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号