首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国化学会会志》2018,65(6):681-686
Fe3O4@Gly nanoparticles were synthetized by coprecipitation and studied in the transesterification of soybean oil and methanol to determine its performance for biodiesel synthesis. The magnetism and catalytic performance of Fe3O4@Gly alkaline catalyst were investigated in detail. With a catalyst dosage 1.5 wt %, methanol/soybean oil ratio of 15:1, reaction temperature of 65 °C, and a reaction time of 3 h, the highest yield of biodiesel was 95.8%. The strong base catalyst CaO was used as comparison, from which it was seen that Fe3O4@Gly was more hydrophobic than the former. Moreover, because of the complete dissolution of oleic acid in methanol, Fe3O4@Gly could make better contact with oleic acid, which made it perform far better than pure CaO in oleic acid. In addition, after four times recycling, the yield of biodiesel was still 86.6%. The results show that Fe3O4@Gly possesses excellent properties of acid resistance and recyclability. The catalyst can be a high‐efficiency alkaline heterogeneous catalyst for biodiesel production.  相似文献   

2.
A novel ZnO/Ca(OH)2/KF solid base catalyst was prepared by the grinding method and applied to biodiesel synthesis by the transesterification of soybean oil. The effect of various parameters such as KF molar amount, calcination temperature, the amount of catalyst, molar ratio of methanol to oil, reaction temperature, and time on the activity of the catalyst were investigated. The catalysts were characterized by several techniques of thermogravimetry/derivative thermogravimetry, X–ray diffraction, Hammett indicator method, and scanning electron microscopy. The analysis results indicated that the KF interacted with Ca(OH)2 and formed KCaF3 phase before calcination of the catalyst. The formed KCaF3 crystal phase was the main catalytic active component for the catalyst activity. In addition, the basicity of ZnO/Ca(OH)2/KF was greatly influenced by the different calcination temperates, and the catalyst activity was correlated closely with the basicity. A desired biodiesel yield of 97.6 % was obtained at catalyst amount of 3 %, methanol/oil of 12:1, and reaction time of 1.5 h at 65 °C.  相似文献   

3.
以草酸盐为前驱体采用两步法制备了一种以CaO-MgO作为活性组分,以CoFe_2O_4作为磁核的磁性固体碱催化剂,并用于大豆油与甲醇的酯交换反应合成生物柴油。对制备的磁性固体碱催化剂进行了磁滞回线、X-射线衍射(XRD)、CO_2-TPD及透射电镜(TEM)表征。考察了不同核壳物质的量比、焙烧温度、反应温度、反应时间、醇油物质的量比以及催化剂用量等因素对大豆油转化为生物柴油产率的影响。结果表明,采用核壳物质的量比为1∶6、焙烧温度为700℃所制备的CaO-MgO@CoFe_2O_4催化剂,当醇油物质的量比为12、催化剂用量为大豆油质量的1.0%时,在65℃下反应时间3 h,生物柴油收率高达97.1%。该催化剂具有较好的重复利用性能,重复利用四次后生物柴油的收率仍可达90%。  相似文献   

4.
CaO–Al2O3/ZrO2 mixed oxide catalyst was prepared using free-solvent method. The catalyst was characterized using X-ray diffraction, BET surface area, acidity index (obtained by titration method), and scanning electron microscopy (SEM). With calcium aluminate and calcium zirconate been successfully formed, the mix exhibited small crystal size, high acidity, and large surface area, pore size, and pore volume, making it a catalyst of choice for biodiesel production. The activity of catalyst was evaluated in the course of esterification of oleic acid as well as transesterification of waste cooking oil (WCO) into biodiesel. Based on a four-variable central composite design (CCD), response surface methodology (RSM) was used to optimize effective variables on oleic acid conversion. The optimum yield of 94.68% was obtained at the following set of optimum conditions: reaction temperature of 120 °C, methanol/oleic acid molar ratio of 15.64, catalyst concentration of 2.94 wt%, and reaction time of 4 h; the result was in excellent agreement with the predicted values. Furthermore, under the optimum conditions, the catalyst succeeded to convert 93.48% of WCO into biodiesel.  相似文献   

5.
Egg shells were subjected to calcination–hydration–dehydration treatment to obtain CaO with high activity. The performance of CaO obtained from the calcination–hydration–dehydration treatment of egg shell and commercial CaO was tested for its catalytic activity via transesterification of waste frying oil (WFO). The results showed that the methyl ester conversion was 67.57% for commercial CaO and it was 94.52% for CaO obtained from the calcination–hydration–dehydration treatment of egg shell at a 5 wt% catalyst (based on oil weight), a methanol to oil ratio of 12:1, a reaction temperature of 65 °C and a reaction time of 1 h. The biodiesel conversion was determined by 1H Nuclear Magnetic Resonance Spectroscopy (1H NMR).  相似文献   

6.
In this work, CaO@LiFe5O8 and (CaO-Y2O3)@LiFe5O8 solid base catalysts were synthesized using LiFe5O8 as the magnetic core to support the active centers. The as-prepared catalysts and commercial CaO were characterized using X-ray diffraction, scanning electronic microscope, and CO2-temperature-programmed desorption techniques. The results indicated that CaO@LiFe5O8 and (CaO-Y2O3)@LiFe5O8 solid base catalysts, which could be recycled under the external magnetic field because of their strong magnetism, exhibited better dispersibility and higher total number of basic sites compared with commercial CaO. Additional water and oleic acid were added to the reaction system of palm oil with methanol, and the catalyst was exposed to air to detect its stability in the reaction process. The experiments showed that the (CaO-Y2O3)@LiFe5O8 solid base catalyst performed better and possessed not only good water resistance ability but also preferable tolerance to air exposure. In addition, response surface methodology based on the Box–Behnken design was used to optimize the process parameters for the synthesis of biodiesel from palm oil and methanol in the presence of (CaO-Y2O3)@LiFe5O8. The optimum process conditions were determined as follows: reaction temperature was 64.96°C, reaction time 4.36 hr, methanol: oil 13, catalyst amount 3.73%, and the highest biodiesel yield reached 96.21%.  相似文献   

7.
A new heterogeneous K2CO3 supported by a layered double hydroxide (LDH), Mg–Al hydrotalcite, was prepared and used as a catalyst for the biodiesel preparation by a tri-component coupling transesterification of methanol, vegetable oil, and methyl acetate. K2CO3/Mg-Al exhibits high catalytic activities, and biodiesel yield can reach 99.48% within 20 min under 60°C, with 6 wt.% of K2CO3/Mg-Al, 1:1:12 molar ratio of rapeseed oil, methyl acetate, and methanol. Fourier-transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, nitrogen physical adsorption, thermogravimetry analysis, and CO2-chemical adsorption were used to assess the physical properties of the prepared K2CO3/Mg-Al. Using the tri-component coupling transesterification, 12.2% cost reduce can be get by reducing the cost from 8458 to 7424 ¥/t compared with di-component transesterification containing oil and methanol as resource.  相似文献   

8.
Fe3O4/ZnMg(Al)O solid base catalyst was prepared by calcining ZnMgAl‐LDHs grown on the surface of magnetic Fe3O4 synthesized by chemical coprecipitation. The magnetic property of the catalyst was studied by vibrating sample magnetometer. The results showed that the catalyst possessed excellent magnetic responsivity, and it could be recovered by external magnetic field. The magnetic catalyst was also characterized by ICP, TG‐DTG, XRD, SEM, EDS, TEM and N2 absorption‐desorption. It was found that the catalyst showed a unique porous structure. The reaction conditions affecting biodiesel yield were investigated, the biodiesel yield reached 94% was obtained under the optimal conditions. The biodiesel yield was still above 82% after 7 times of regeneration, and the catalyst can be easily separated and recycled.  相似文献   

9.
Orthorhombic perovskite Na0.1Ca0.9TiO3 nanorods were synthesized at low calcination temperature via alkali hydrothermal synthesis. The synthesized nanorods exhibits a square based prism morphology, with a width and length of 200–500 nm and 2–3 μm respectively. The structural, textural and basic characteristics of the catalyst were examined by SEM, TEM, XRD and BET. The growth direction of the nanorods was confirmed to be along the long symmetry [110] zone axis and the exterior surfaces are found to be polar (110) and (002) with either Ti or Ca exposed in those facets. The catalytic activity of the nanorods was investigated for the transesterification of the low-input Camelina Sativa oil and methanol to give the fatty acid methyl ester (FAME). Effects of important reaction parameters such as methanol to oil molar ratio, catalyst dosage, reaction temperature and reaction time on oil conversion were examined. Optimized biodiesel yield of 93 % was achieved with catalyst dosage of 6 % w/w, methanol to oil molar ratio of 36:1 at reaction temperature of 60 °C for 8 h.  相似文献   

10.
An efficient three‐component reaction of aromatic aldehydes, 6‐aminouracil/6‐amino‐1,3‐dimethyluracil and 4‐hydroxycoumarin in the presence of a novel heterogeneous catalyst H3PMo12O40‐immobilized Co3O4/chitosan led to a synthesis of a new class of pyrimidinedione derivatives under reflux conditions. The magnetically recoverable nanocomposite of Co3O4/chitosan/H3PMo12O40 was fully characterized by Fourier transform‐infrared spectrophotometry, scanning electron microscopy, X‐ray powder diffraction, energy‐dispersive X‐ray spectroscopy, vibrating‐sample magnetometry and N2 adsorption–desorption by Brunauer–Emmett–Teller analysis. Results show that Keggin‐type 12‐molybdophosphoric acid immobilized into the network of the cross‐linked chitosan with super‐paramagnetic Co3O4 nanoparticles. The present method offers several advantages, such as simple procedure, short reaction times and excellent yields of products. The novelty of the catalyst, high catalytic activity, easy separation from the reaction with an external magnetic field and reusability of the catalyst in six consecutive runs are additional eco‐friendly attributes of this catalytic system.  相似文献   

11.
用于生物柴油清洁生产的磁性固体催化剂CaO/MgO/Fe_3O_4   总被引:3,自引:0,他引:3  
制备了具有磁性和催化活性的双功能催化剂CaO/MgO/Fe3O4,用于催化花生油酯交换制备生物柴油的清洁生产过程。对CaO/MgO/Fe3O4进行了XRD、TEM、FT-IR和磁性等表征分析,探讨了CaO/MgO/Fe3O4催化剂的重复利用性能。结果表明,用Mg(Ac)2溶液等体积浸渍磁性基质Fe3O4,在N2气氛中600℃焙烧2 h,可得到具有磁性的载体5%MgO/Fe3O4;再用Ca(Ac)2溶液等体积浸渍MgO/Fe3O4,并在N2气氛中700℃煅烧,得到具有磁性且催化活性较高的催化剂10%CaO/MgO/Fe3O4。该催化剂具有核壳结构,磁核平均直径约为35 nm。在催化剂用量10%,醇油摩尔比12∶1,反应温度65℃,反应2 h的条件下酯交换转化率可达90%以上。在磁场的吸引下该催化剂能快速与反应体系分离,催化剂回收率达90%。但CaO/MgO/Fe3O4重复利用性能较差,其原因是在搅拌反应过程中催化活性组分逐渐从催化剂上脱落所致。  相似文献   

12.
Magnetic mesoporous silica was prepared via embedding magnetite nanoparticles between channels of mesoporous silica (SBA‐15). The prepared composite (Fe3O4@SiO2‐SBA) was then reacted with 3‐chloropropyltriethoxysilane, sodium imidazolide and 2‐bromopyridine to give 3‐(pyridin‐2‐yl)‐1H‐imidazol‐3‐iumpropyl‐functionalized Fe3O4@SiO2‐SBA as a supported pincer ligand for Pd(II). The functionalized magnetic mesoporous silica was further reacted with [PdCl2(SMe2)2] to produce a supported N‐heterocyclic carbene–Pd(II) complex. The obtained catalyst was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray analysis, vibrating sample magnetometry, Brunauer–Emmett–Teller surface area measurement and X‐ray diffraction. The amount of the loaded complex was 80.3 mg g?1, as calculated through thermogravimetric analysis. The formation of the ordered mesoporous structure of SBA‐15 was confirmed using low‐angle X‐ray diffraction and transmission electron microscopy. Also, X‐ray photoelectron spectroscopy confirmed the presence of the Pd(II) complex on the magnetic support. The prepared magnetic catalyst was then effectively used in the coupling reaction of olefins with aryl halides, i.e. the Heck reaction, in the presence of a base. The reaction parameters, such as solvent, base, temperature, amount of catalyst and reactant ratio, were optimized by choosing the coupling reaction of 1‐bromonaphthalene and styrene as a model Heck reaction. N‐Methylpyrrolidone as solvent, 0.25 mol% catalyst, K2CO3 as base, reaction temperature of 120°C and ultrasonication of the catalyst for 10 min before use provided the best conditions for the Heck cross‐coupling reaction. The best results were observed for aryl bromides and iodides while aryl chlorides were found to be less reactive. The catalyst exhibited noticeable stability and reusability.  相似文献   

13.
FDU-15-SO3H, a solid acid material prepared from the sulfonation of FDU-15 mesoporous polymer, has been demonstrated to serve as an efficient catalyst in the esterification of palmitic acid with methanol as well as in the transesterification of fatty acid-edible oil mixture. FDU-15-SO3H achieved an acid conversion of 99.0% when the esterification was carried out at 343 K with a methanol/palmitic acid molar ratio of 6:1 and 5 wt% catalyst loading. It was capable of giving 99.0% yield of fatty acid methyl esters (FAME) when the transesterification of soybean oil was performed at 413 K and the methanol/oil weight ratio of 1:1. FDU-15-SO3H was further applied to the transesterification/esterification of the oil mixtures with a varying ratio of soybean oil to palmitic acid, which simulated the feedstock with a high content of free fatty acids. The yield of FAME reached 95% for the oil mixtures containing 30 wt% palmitic acid. This indicated the sulfonated mesopolymer was a potential catalyst for clean synthesis of fuel alternative of biodiesel from the waste oil without further purification.  相似文献   

14.
本文研究了不同石墨烯基材料用作转酯化反应制备生物柴油催化剂的性能.将磺酸基或磷酸盐基嫁接到热还原的氧化石墨烯表面,制备了固体酸石墨烯基样品.并采用扫描电镜、X射线衍射、热重分析、X射线光电子能谱、N_2吸附-脱附法、电位滴定法、元素分析以及红外光谱法对所制样品进行了全面表征.将所制样品用于130℃带压力的条件下菜籽油与甲醇转酯化反应中,并将其催化活性与商用的多相酸催化剂Amberlyst-15的进行了比较.结果表明,所有改进的样品在转酯化反应中均表现出催化活性,但各样品上生物柴油产率差别较大.其中以苯二氮磺酸基功能化的热还原氧化石墨烯样品上脂肪酸甲酯产率最高,反应6 h后达70%,也明显高于商用催化剂Amberlyst-15.该样品也表现出良好的重复使用性能.  相似文献   

15.
Waste eggshells were considered for synthesising a precursor (CaO) for a heterogeneous catalyst, further impregnated by alkali caesium oxide (Cs2O). The following techniques were used to characterise the synthesised catalysts: X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and Temperature Programmed Desorption (CO2-TPD). The synthesised catalyst revealed its suitability for transesterification to produce biodiesel. The biodiesel production process was optimised, and it showed that the optimal biodiesel yield is 93.59%. The optimal set of process parameters is process temperature 80 °C, process time 90 min, methanol-to-oil molar ratio 8 and catalyst loading 3 wt.%. It has been found that the high basicity of the catalyst tends to give a high biodiesel yield at low methanol-to-oil ratio 8 when the reaction time is also less (90 min). The fuel properties of biodiesel also satisfied the standard limits defined by ASTM and the EN standards. Thus, the synthesised catalyst from waste eggshells is highly active, improved the biodiesel production conditions and PPSS oil is a potential nonedible source.  相似文献   

16.
Fe-Ca磁性固体碱催化剂上菜籽油酯交换反应   总被引:2,自引:0,他引:2  
采用原位沉淀法合成了双功能磁性固体碱催化剂CaO·γ-Fe2O3,用于催化菜籽油酯交换反应制备生物柴油。利用XRD、BET、TG-DTA、SEM和VSM对催化剂进行了表征,用ICP-AES对产物脂肪酸甲酯(FAME)中Ca、Fe残留量进行了测定。结果表明,Fe和Ca两种组分间有较好复合,催化剂显示出较好的磁学性能,饱和磁化率达到45.7emu/g,明显高于文献报道的磁性碱催化剂。在温和的反应条件(常压、64℃、催化剂加入量为油重的2.5%、醇油摩尔比15、转速750r/min)下,反应2h,重复使用前三次酯交换反应转化率都维持在95%左右。  相似文献   

17.
Cu(II) immobilized on Fe3O4–diethylenetriamine was designed as a new, inexpensive and efficient heterogeneous catalyst for the synthesis of 2,3‐dihydroquinazolin‐4(1H )‐ones and the oxidative coupling of thiols. The structure of the nanomagnetic catalyst was comprehensively characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, vibrating sample magnetometry, thermogravimetric analysis, X‐ray diffraction and atomic absorption spectroscopy. Simple preparation of the catalyst from commercially available materials, high catalytic activity, simple operation, high yields, use of green solvents, easy magnetic separation and reusability of the catalyst with unaltered activity make our protocol a green and feasible synthetic strategy.  相似文献   

18.
Calcium carbide residue (CCR) was investigated in transesterification reaction of triglycerides to determine its viability as a solid catalyst for biodiesel synthesis. Literature survey showed that CCR has never been studied as a solid catalyst in the transesterification of triglyceride. The scope of the study includes the effects of CCR calcination temperature, calcination time, the alcohol/oil molar ratio, the catalyst amount (wt % of oil) and the reaction time. The relationship between chemical composition and catalytic activity of waste cement was also investigated. These CCR catalysts, thermally activated at 600 °C, can give rise to fatty acid methyl esters (FAME) purity higher than 99.5%, after 3 h of reaction, when oil/methanol molar ratio of 1/12 and 1 wt % of the catalyst were employed. Application of CCR as catalyst for biodiesel production in this study may not only provide a cost‐effective and environment friendly way of recycling CCR waste but also reduce hopefully the cost of biodiesel production.  相似文献   

19.
The catalytic activity of magnetically recoverable MIL‐101 was investigated in the oxidation of alkenes to carboxylic acids and cyanosilylation of aldehydes. MIL‐101 was treated with Fe3O4 and the prepared catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, N2 adsorption measurements, field emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and inductively coupled plasma analysis. The catalytic active sites in this heterogeneous catalyst are Cr3+ nodes of the MIL‐101 framework. This heterogeneous catalyst has the advantages of excellent yields, short reaction times and reusability several times without significant decrease in its initial activity and stability in both oxidation and cyanosilylation reactions. Its magnetic property allows its easy separation using an external magnetic field.  相似文献   

20.
The immobilization of sulfonic acid on the surface of Fe3O4 magnetic nanoparticles (MNPs) as a novel acid nanocatalyst has been successfully reported. The morphological features, thermal stability, magnetic properties, and other physicochemical properties of the prepared superparamagnetic core–shell (Fe3O4@PFBA–Metformin@SO3H) were thoroughly characterized using Fourier transform infrared (FTIR), X‐ray diffraction (XRD), energy‐dispersive X‐ray spectroscopy (EDS), field‐emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis–differential thermal analysis (TGA‐DTA), atomic force microscopy (AFM), dynamic light scattering (DLS), Brunauer–Emmett–Teller (BET), and vibrating sample magnetometer (VSM) techniques. It was applied as an efficient and reusable catalyst for the synthesis of 2‐(piperazin‐1‐yl) quinoxaline and benzimidazole derivatives via a one‐pot multiple‐component cascade reaction under green conditions. The results displayed the excellent catalytic activity of Fe3O4@PFBA–metformin@SO3H as an organic–inorganic hybrid nanocatalyst in condensation and multicomponent Mannich‐type reactions. The easy separation, simple workup, excellent stability, and reusability of the nanocatalyst and quantitative yields of products and short reaction time are some outstanding advantages of this protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号