首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hollow NiO–carbon hybrid nanoparticle aggregates are fabricated through an environmental template‐free solvothermal alcoholysis route. Controlled hollow structure is achieved by adjusting the ratio of ethylene glycol to water and reaction time of solvothermal alcoholysis. Amorphous carbon can be loaded on the NiO nanoparticles uniformly in the solvothermal alcoholysis process, and the subsequent calcination results in the formation of hollow NiO–C hybrid nanoparticle aggregates. As anode materials for lithium‐ion batteries, it exhibits a stable reversible capacity of 622 mAh g?1, and capacity retention keeps over 90.7% after 100 cycles at constant current density of 200 mA g?1. The NiO–C electrode also exhibits good rate capabilities. The unique hollow structures can shorten the length of Li‐ion diffusion and offer a sufficient void space, which sufficiently alleviates the mechanical stress caused by volume change. The hybrid carbon in the particles renders the electrode having a good electronic conductivity. Here, the hollow NiO‐C hybrid electrode exhibits excellent electrochemical performance.  相似文献   

2.
Si nanoparticle (Si‐NP) composite anode with high rate and long cycle life is an attractive anode material for lithium‐ion battery (LIB) in hybrid electric vehicle (HEV)/pure electric vehicle (PEV). In this work, a carbon nanotube (CNT)/reduced graphene oxide (rGO)/Si nanoparticle composite with alternated structure as Li‐ion battery anode is prepared. In this structure, rGO completely wraps the entire Si/CNT networks by different layers and CNT networks provide fast electron transport pathways with reduced solid‐state diffusion, so that the stable solid‐electrolyte interphase layer can form on the whole surface of the matrix instead of on single Si nanoparticle, which ensure the high cycle stability to achieve the excellent cycle performance. As a result, the CNT/rGO/Si‐NP anode exhibits high performances with long cycle life (≈455 mAh g?1 at 15 A g?1 after 2000 cycles), high specific charge capacity (≈2250 mAh g?1 at 0.2 A g?1, ≈650 mAh g?1 at 15 A g?1), and fast charge/discharge rates (up to 16 A g?1). This nanostructure anode with facile and low‐cost synthesis method, as well as excellent electrochemical performances, makes it attractive for the long life cycles at high rate of the next generation LIB applications in HEV/PEV.  相似文献   

3.
Graphene‐based phosphorus‐doped carbon (GPC) is prepared through a facile and scalable thermal annealing method by triphenylphosphine and graphite oxide as precursor. The P atoms are successfully doped into few layer graphene with two forms of P–O and P–C bands. The GPC used as anode material for Na‐ion batteries delivers a high charge capacity 284.8 mAh g?1 at a current density of 50 mA g?1 after 60 cycles. Superior cycling performance is also shown at high charge?discharge rate: a stable charge capacity 145.6 mAh g?1 can be achieved at the current density of 500 mA g?1 after 600 cycles. The result demonstrates that the GPC electrode exhibits good electrochemical performance (higher reversible charge capacity, super rate capability, and long‐term cycling stability). The excellent electrochemical performance originated from the large interlayer distance, large amount of defects, vacancies, and active site caused by P atoms doping. The relationship of P atoms doping amount with the Na storage properties is also discussed. This superior sodium storage performance of GPC makes it as a promising alternative anode material for sodium‐ion batteries.  相似文献   

4.
A facile sol-gel approach for the synthesis of lithium titanate composite decorated with N-doped carbon material (LTO/NC) is proposed. Urea is used as a nitrogen source in the proposed approach. The LTO/NC exhibits superior electrochemical performances as an electrode material for lithium-ion batteries, delivering a discharge capacity of as high as 103 mAh g?1 at a high rate of 20 C and retaining a stable reversible capacity of 90 mAh g?1 after 1000 cycles, corresponding to 100% capacity retention. These excellent electrochemical performances are proved by the nanoscale structure and N-doped carbon coating. NC layers were uniformly dispersed on the surface of LTO, thus preventing agglomeration, favoring the rapid migration of the inserted Li ion, and increasing the Li+ diffusion coefficient and electronic conductivity. LTO with the appropriate amount of NC coating is a promising anode material with applications in the development of high-powered and durable lithium-ion batteries.  相似文献   

5.
Porous electrode materials with large specific surface area, relatively short diffusion path, and higher electrical conductivity, which display both better rate capabilities and good cycle lives, have huge benefits for practical applications in lithium‐ion batteries. Here, uniform porous NiCo2O4 nanorods (PNNs) with pore‐size distribution in the range of 10–30 nm and lengths of up to several micrometers are synthesized through a convenient oxalate co‐precipitation method followed by a calcining process. The PNN electrode exhibits high reversible capacity and outstanding cycling stability (after 150 cycles still maintain about 650 mA h g?1 at a current density of 100 mA g?1), as well as high Coulombic efficiency (>98%). Moreover, the PNNs also exhibit an excellent rate performance, and deliver a stable reversible specific capacity of 450 mA h g?1 even at 2000 mA g?1. These results demonstrate that the PNNs are promising anode materials for high‐performance Li‐ion batteries.  相似文献   

6.
3D vertically aligned carbon nanotubes (CNTs)/NiCo2O4 core/shell structures are successfully synthesized as binder‐free anode materials for Li‐ion batteries (LIBs) via a facile electrochemical deposition method followed by subsequent annealing in air. The vertically aligned CNTs/NiCo2O4 core/shell structures are used as binder‐free anode materials for LIBs and exhibit high and stable reversible capacity (1147.6 mAhg?1 at 100 mAg?1), excellent rate capability (712.9 mAh g?1 at 1000 mAg?1), and good cycle stability (no capacity fading over 200 cycles). The improved performance of these LIBs is attributed to the unique 3D vertically aligned CNTs/NiCo2O4 core/shell structures, which support high electron conductivity, fast ion/electron transport in the electrode and at the electrolyte/electrode interface, and accommodate the volume change during cycling. Furthermore, the synthetic strategy presented can be easily extended to fabricate other metal oxides with a controlled core/shell structure, which may be a promising electrode material for high‐performance LIBs.  相似文献   

7.
The development of methods to synthesize electrode materials can improve the performance of lithium ion storage. In this study, a facile and low-cost approach is employed to synthesize LiFePO4 (LFP/NC) hybrid materials decorated with nitrogen-doped carbon nanomaterials (NC). Melamine was used as nitrogen and carbon source with an NC to LFP ratio of 3.19%. As electrode materials for lithium ion batteries (LIBs), the LFP/NC composites exhibit an optimum performance with a high rate capacity of 144.6 mAh·g?1 at 1 C after 500 cycles without apparent loss. The outstanding cycling stability may be attributed to the synergetic effects of well-crystallized particles and NC layers.  相似文献   

8.
Nitrogen-doped carbon nanofiber (NCNF) decorated LiFePO4 (LFP) composites are synthesized via an in situ hydrothermal growth method. Electrochemical performance results show that the embedded NCNF can improve electron and ion transfer, thereby resulting in excellent cycling performance. The as-prepared LFP and NCNF composites exhibit excellent electrochemical properties with discharge capacities of 188.9 mAh g?1 (at 0.2 C) maintained at 167.9 mAh g?1 even after 200 charge/discharge cycles. The electrode also presents a good rate capability of 10 C and a reversible specific capacity as high as 95.7 mAh g?1. LFP composites are a potential alternative high-performing anode material for lithium ion batteries.  相似文献   

9.
Rechargeable Li‐O2 batteries are promising candidates for electric vehicles due to their high energy density. However, the current development of Li‐O2 batteries demands highly efficient air cathode catalysts for high capacity, good rate capability, and long cycle life. In this work, a hydrothermal‐calcination method is presented to prepare a composite of Co3O4 hollow nanoparticles and Co organic complexes highly dispersed on N‐doped graphene (Co–NG), which acts as a bifunctional air cathode catalyst to optimize the electrochemical performances of Li‐O2 batteries. Co–NG exhibits an outstanding initial discharge capacity up to 19 133 mAh g?1 at a current density of 200 mA g?1. In addition, the batteries could sustain 71 cycles at a cutoff capacity of 1000 mAh g?1 with low overpotentials at the current density of 200 mA g?1. Co–NG composites are attractive as air cathode catalysts for rechargeable Li‐O2 batteries.  相似文献   

10.
2D MoS2 has a significant capacity decay due to the stack of layers during the charge/discharge process, which has seriously restricted its practical application in lithium‐ion batteries. Herein, a simple preform‐in situ process to fabricate vertically grown MoS2 nanosheets with 8–12 layers anchored on reduced graphene oxide (rGO) flexible supports is presented. As an anode in MoS2/rGO//Li half‐cell, the MoS2/rGO electrode shows a high initial coulomb efficiency (84.1%) and excellent capacity retention (84.7% after 100 cycles) at a current density of 100 mA g?1. Moreover, the MoS2/rGO electrode keeps capacity as high as 786 mAh g?1 after 1000 cycles with minimum degradation of 54 µAh g?1 cycle?1 after being further tested at a high current density of 1000 mA g?1. When evaluated in a MoS2/rGO//LiCoO2 full‐cell, it delivers an initial charge capacity of 153 mAh g?1 at a current density of 100 mA g?1 and achieves an energy density of 208 Wh kg?1 under the power density of 220 W kg?1.  相似文献   

11.
The arrangement and construction of 1D carbon nanotubes (CNTs) into frameworks with two or more levels of structures is an essential step to demonstrate their intrinsic properties and promising applications for energy storage. Single‐walled CNTs (SWCNTs) are considered to have more excellent properties compared with multiwalled CNTs (MWCNTs), however, how to appropriately use SWCNTs as building blocks for nanocomposite electrodes is not well understood. Here, a composite cathode containing SWCNT@S coaxial nanocables for Li‐S battery is fabricated by a facile melt‐diffusion strategy. Beneficial from its sp2 carbon nanostructure, higher specific surface area, larger aspect ratio, and interconnected electron pathway, the SWCNT@S cathode have reversible capacities of 676, 441 and 311 mAh g?1 for the first discharging at 0.5 C, 100th discharging at 1.0 C, and discharging at 10.0 C, respectively. These capacities are much higher than the corresponding capacities of the MWCNT@S cathode. By introducing polyethylene glycol (PEG) as a physical barrier to trap the highly polar polysulfide species, the PEG modified SWCNT@S cathode afforded improved reversible capacities. The cycling stability of the reversible capacities is expected to be further improved. The SWCNTs can serve as scaffolds for Li‐S battery with much improved energy storage performance.  相似文献   

12.
Hari Raj  Anjan Sil 《Ionics》2018,24(9):2543-2553
Pristine LiFePO4 (LFP) and carbon-coated LiFePO4 (LFP/C) are synthesized by sol-gel process using citric acid as a carbon precursor. LFP/C is prepared with three different stoichiometric ratios of metal ions and citric acid, namely 1:0.5, 1:1, and 1:2. Prepared LFP and LFP/C powder samples are characterized by X-ray diffractometer, field emission scanning electron microscope, transmission electron microscope, and Raman spectrophotometer. Electrochemical performances of pristine and carbon-coated LFP are investigated by charge-discharge and cyclic voltammetry technique. The results show that LFP/C (1:1) with an optimum thickness of 4.2 nm and higher graphitic carbon coating has the highest discharge capacity of 148.2 mA h g?1 at 0.1 C rate and 113.1 mA h g?1 at a high rate of 5 C among all four samples prepared. The sample LFP/C (1:1) shows 96% capacity retention after 300 cycles at 1 C rate. The decrease in discharge capacity (141.4and 105.9 mA h g?1 at 0.1 and 5 C, respectively) is observed for the sample LFP/C (1:2). Whereas, pristine LFP shows the lowest discharge capacity of 111.1 mA h g?1 at 0.1 C and capacity was decreased very fast and work only up to 147 cycles. Moreover, cyclic voltammetry has also revealed the lowest polarization of 0.19 V for LFP/C (1:1) and the highest 0.4 V for pristine LFP.  相似文献   

13.
Silica (SiO2) is regarded as one of the most promising anode materials for lithium‐ion batteries due to the high theoretical specific capacity and extremely low cost. However, the low intrinsic electrical conductivity and the big volume change during charge/discharge cycles result in a poor electrochemical performance. Here, hollow silica spheres embedded in porous carbon (HSS–C) composites are synthesized and investigated as an anode material for lithium‐ion batteries. The HSS–C composites demonstrate a high specific capacity of about 910 mA h g?1 at a rate of 200 mA g?1 after 150 cycles and exhibit good rate capability. The porous carbon with a large surface area and void space filled both inside and outside of the hollow silica spheres acts as an excellent conductive layer to enhance the overall conductivity of the electrode, shortens the diffusion path length for the transport of lithium ions, and also buffers the volume change accompanied with lithium‐ion insertion/extraction processes.  相似文献   

14.
Advanced nanostructured functional materials obtained from the precursors of metal–organic frameworks show several unique advantages, including plentiful porous structures and large specific surface areas. Based on this, designed and constructed are highly dispersed ZnSe nanoparticles anchored in a N‐doped porous carbon rhombic dodecahedron (ZnSe@NDPC) by a sequential high‐temperature pyrolysis and selenization method. The specific synthesis process involves a two‐step heat treatment of the template‐engaged reaction between zinc‐based zeolitic imidazolate framework (ZIF‐8) and selenium power. By optimizing the calcination temperature, the as‐synthesized ZnSe@NDPC‐700 as an advanced anode of potassium ion batteries demonstrates the best electrochemical performance, including a high capacity (262.8 mA h g?1 over 200 cycles at 100 mA g?1) and a good rate capability (109.4 mA h g?1 at 2000 mA g?1 and 52.8 mA h g?1 at 5000 mA g?1). Moreover, the capacitance and diffusion mechanisms are also investigated by the qualitative and quantitate analysis, finally accounting for the superior K storage.  相似文献   

15.
Zhijun Jia  Jiawei Hao  Lujing Liu  Yi Wang  Tao Qi 《Ionics》2018,24(11):3483-3491
In this work, vertically aligned α-MnO2 nanosheets on carbon nanotubes are synthesized simply by a solution process and the electrochemical performance as host materials of magnesium ion is tested in aqueous solution. Cyclic voltammetry analysis confirms the enhanced electrochemical activity of carbon nanotube-supported samples. Moreover, carbon nanotubes skeleton could reduce the charge transfer resistant of the cathode materials, which is confirmed by electrochemical impedance spectroscopy. Furthermore, when tested as magnesium ion batteries cathodic electrode, the α-MnO2/carbon nanotube sample registers a prominent discharge capacity of 144.6 mAh g?1 at current density of 0.5 A g?1, which is higher than the discharge capacity of α-MnO2 (87.5 mAh g?1) due to the synergistic effect of insertion/deinsertion reaction and physical adsorption/desorption process. After the 1000th cycle, a remarkable discharge capacity of 48.3 mAh g?1 is collected for α-MnO2/carbon nanotube at current density of 10 A g?1, which is 85% of the original. It is found that the carbon skeleton not only improved the capacity but also enhanced the cycling performance of the α-MnO2 electrode significantly. Therefore, α-MnO2/carbon nanotube is a very promising candidate for further application in environmentally benign magnesium ion batteries.  相似文献   

16.
This study presents a general approach for the synthesis of carbon‐encapsulated wire‐in‐tube Co3O4/MnO2 heterostructure nanofibers (Co3O4/MnO2@C) via electrospinning followed by calcination. The as‐synthesized Co3O4/MnO2@C is investigated as the sodium‐ion batteries anode material, which not only exhibits a high reversible capacity of 306 mAh g−1 at 100 mA g−1 over 200 cycles, but also shows a cycling stability of 126 mAh g−1 after 1000 cycles at a high current density of 800 mA g−1. The excellent electrochemical performance can be ascribed to the contribution from carbon‐encapsulated outer‐tube Co3O4 and inner‐wire MnO2 heterostructures, which offer a large internal space and good electrical conductivity. The present work can be helpful in providing new insights into heterostructures for sodium‐ion batteries and other applications.  相似文献   

17.
The exploration of high‐energy and stable cathode materials is highly desirable and challenging for the development of advanced Zn‐based batteries. In this work, a facile pyrolysis method is reported to synthetize Ni3S2/carbon nanocomposite as high‐performance cathode by employing ion exchange resin as a precursor. Attributing to the abundant active sites and enhanced conductivity from well binding between Ni3S2 and carbon, a markedly high capacity of 234.3 mA h g?1 is obtained for this Ni3S2/carbon at a high current density of 6.9 A g?1. Moreover, a Zn‐based battery is demonstrated by using the Ni3S2/carbon as a cathode and Zn plate as an anode, which delivers a maximum power density of 58.6 kW kg?1, together with a peak energy density of 356 W h kg?1 and 93.7% capacity retention after 5000 charging–discharging cycles. This simple synthetic strategy to achieve robust Ni‐based composite electrodes may open up new opportunities to design other transition metal–based electrodes for energy storage applications.  相似文献   

18.
The structure and morphology of sodium vanadium phosphate (Na3V2(PO4)3) play a vital role in enhancing the electrochemical performance of sodium-ion batteries due to the inherent poor electronic conductivity of the phosphate framework. In order to improve this drawback, a new chrysanthemum-structured Na3V2(PO4)3/C material has been successfully assembled with multi-hierarchical nanosheets via a hydrothermal method. Continuous scattering nanosheets in chrysanthemum petals are beneficial in reducing energy consumption during the process of sodium ion diffusion, on which the carbon-coated surface can significantly increase overall conductivity. The as-prepared sample exhibits outstanding electrochemical performance due to its unique structure. It rendered a high initial specific capacity of 117.4?mAh?g?1 at a current density of 0.05 C. Further increasing the current density to 10 C, the initial specific capacity still achieves 101.3?mAh?g?1 and remains at 87.5?mAh?g?1 after 1000 cycles. In addition, a symmetrical sodium-ion full battery using the chrysanthemum-structured Na3V2(PO4)3/C materials as both the cathode and anode has been successfully fabricated, delivering the capacity of 62?mAh?g?1 at 1?C and achieving the coulombic efficiency at an average of 96.4% within 100 cycles. These results indicate that the new chrysanthemum-structured Na3V2(PO4)3/C can provide a new idea for the development of high-performance sodium-ion batteries.  相似文献   

19.
Structure and morphology of molybdenum disulfide (MoS2) play an important role in improving its reversible lithium storage and sodium storage as anodes. In this study, a facile method is developed to prepare C/C@SnO2/MoS2 nanofibers with MoS2 nanoflakes anchoring on the core–shell C/C@SnO2 nanofibers through hydrothermal reaction. By adjusting the concentration of MoS2 precursors, the synthesized MoS2 with different slabs dimensions, size, and morphologies are obtained, constituting budding and blooming wintersweet branch‐like composite structure, respectively. Owing to scattered MoS2 nanoparticles and sporadic MoS2 nanoflakes, the budding wintersweet branch‐like composite nanofibers processes less slabs of staking in number and large specific surface area. Benefiting from the exposed C@SnO2 shell layer, the synergistic effect among SnO2, carbon, and MoS2 is strengthened, which maximizes the advantage of each material to exhibit stable specific capacities of 650 and 230 mAh g?1 for Li‐ion batteries and Na‐ion batteries after 200 cycles.  相似文献   

20.
Three‐dimensional (3D) titanium dioxide@germanium (TiO2@Ge) core–shell nanorod arrays on carbon textiles are fabricated by a facile two‐step method and further investigated as flexible electrode for Li‐ion batteries (LIBs). The synthesis of TiO2@Ge composite involves the hydrothermal growth of TiO2 nanorod arrays on carbon textiles and a subsequent coat with a thin layer of germanium with radio frequency (RF) magnetron sputtering. The TiO2 nanorod arrays can effectively not only increase the unit mass loading as a role of skeleton but also remarkably enhance the electrical conductivity via control the lithiation/delithiation voltage in the range of 0.01–1.0 V, where TiO2 can be in situ lithiated to LixTiO2 after the first discharge cycle. Moreover, each TiO2@Ge nanorod has enough space to accommodate the large volume expansion of Ge during charge and discharge cycles. Benefiting from unique electrode architectures, this additive free, self‐supported electrode exhibits the high reversible capacity, outstanding rate capability, and the extremely long cycling stability even at a high rate (700.3 mAh g?1 is still retained at 5 A g?1 after 600 cycles).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号