首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
A combination of a tertiary amine‐based palladacycle and an N‐heterocyclic carbene ligand precursor ( 1 , N,N‐bis‐mesityl‐4,5‐dihydroimidazolium chloride) has been applied to catalyze the Suzuki‐Miyaura cross‐coupling of aryl halides with arylboronic acids. The substrate scope is general: a variety of electron rich and deficient aryl halides (I, Br, Cl) and arylboronic acids were found to undergo the cross‐coupling reaction in good to excellent yields at low catalyst loading of 0.01–1 mol%.  相似文献   

2.
A heterogeneous montmorillonite K‐10‐supported palladium triphenylphosphine catalyst is reported for the Suzuki–Miyaura cross‐coupling reaction at room temperature. A library of electronically diverse aryl bromides and arylboronic acids underwent the cross‐coupling reaction at very good rates in aqueous solvent. The reusability of the catalyst was also examined and it was found to be effective up to three catalytic cycles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A simple, air‐stable, inexpensive and easily prepared molecule, N‐methyliminodiacetic acid (MIDA), is reported as a ligand for palladium‐catalyzed Suzuki–Miyaura cross‐coupling reaction of phenylboronic acid with aryl chlorides. The yield of the corresponding Suzuki coupling reaction is up to around 90% at both high temperature of 80°C and room temperature under ambient atmosphere. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The one‐pot sequential coupling of benzylamines, boronic esters, and aryl iodides has been investigated. In the presence of an N‐activator, the boronate complex formed from an ortho‐lithiated benzylamine and a boronic ester undergoes stereospecific 1,2‐metalate rearrangement/anti‐SN2′ elimination to form a dearomatized tertiary boronic ester. Treatment with an aryl iodide under palladium catalysis leads to rearomatizing γ‐selective allylic Suzuki–Miyaura cross‐coupling to generate 1,1‐diarylalkanes. When enantioenriched α‐substituted benzylamines are employed, the corresponding 1,1‐diarylalkanes are formed with high stereospecificity.  相似文献   

5.
Novel methods for the incorporation of fluorinated subunits into organic frameworks are important in pharmaceutical, agrochemical, and materials science applications. Herein, the first method for the cross‐coupling of benzylic α‐trifluoromethylated alkylboron reagents with (hetero)aryl bromides is achieved through application of a photoredox/nickel dual catalytic system. The harsh conditions and high temperatures required by conventional Suzuki‐coupling protocols are avoided by exploitation of an odd‐electron pathway that permits room temperature transmetalation of these recalcitrant reagents. This method represents the first direct and general route for the synthesis of unsymmetrical 1,1‐diaryl‐2,2,2‐trifluoroethanes, thereby providing efficient access to a previously unexplored chemical space.  相似文献   

6.
Kumada‐Tamao coupling polymerization of 1,4‐dialkoxy‐2‐bromo‐5‐(2‐chloromagnesiovinyl)benzene ( 1 ) and 1,4‐dialkoxy‐2‐(2‐bromovinyl)‐5‐chloromagnesiobenzene ( 2 ) with a Ni catalyst and Suzuki‐Miyaura coupling polymerization of 2‐{2‐[(2,5‐dialkoxy‐4‐iodophenyl)]vinyl}‐4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolane ( 3 ), its bromo counterpart 4 , and 2,5‐dialkoxy‐4‐(2‐bromovinyl)phenylboronic acid ( 5 ) with a Pd initiator were investigated under catalyst‐transfer condensation polymerization conditions for the synthesis of well‐defined poly(p‐phenylenevinylene) (PPV). The Kumada‐Tamao polymerization of vinyl Grignard‐type monomer 1 with Ni(dppp)Cl2 at room temperature did not proceed, whereas aryl Grignard‐type monomer 2 afforded oligomers of low molecular weight. Matrix‐assisted laser desorption ionization time‐of‐flight (MALDI‐TOF) mass spectra of the polymer obtained from 2 implied that the Grignard end group reacted with tetrahydrofuran to terminate polymerization. On the other hand, Suzuki‐Miyaura polymerization of vinyl boronic acid ester type monomers 3 and 4 and phenylboronic acid type monomer 5 with a Pd initiator and aqueous KOH at ?20 °C to room temperature yielded the corresponding PPV with high molecular weight within a few minutes. However, the molecular weight distribution was broad, and MALDI‐TOF mass spectra showed the peaks of polymers bearing no initiator unit at the chain end, as well as those of polymers with the initiator unit. These results indicated that intermolecular chain transfer of the Pd catalyst occurred. Dehalogenation and disproportionation of the growing end also took place as side reactions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2643‐2653  相似文献   

7.
Five conical calix[4]arenes that have a PPh2 group as the sole functional group anchored at their upper rim were assessed in palladium‐catalysed cross‐coupling reactions of phenylboronic acid with aryl halides (dioxane, 100 °C, NaH). With arylbromides, remarkably high activities were obtained with the catalytic systems remaining stable for several days. The performance of the ligands is comparable to a Buchwald‐type triarylphosphane, namely, (2′‐methyl[1,1′‐biphenyl]‐2‐yl)diphenylphosphane, which in contrast to the calixarenyl phosphanes tested may display chelating behaviour in solution. With the fastest ligand, 5‐diphenylphosphanyl‐25,26,27,28‐tetra(p‐methoxy)benzyloxy‐calix[4]arene ( 8 ), the reaction turnover frequency for the arylation of 4‐bromotoluene was 321 000 versus 214 000 mol(ArBr).mol(Pd)?1. h?1 for the reference ligand. The calixarene ligands were also efficient in Suzuki cross‐coupling reactions with aryl chlorides. Thus, by using 1 mol % of [Pd(OAc)2] associated with one of the phosphanes, full conversion of the deactivated arenes 4‐chloroanisole and 4‐chlorotoluene was observed after 16 h. The high performance of the calixarenyl–phosphanes in Suzuki–Miyaura coupling of aryl bromides possibly relies on their ability to stabilise a monoligand [Pd0L(ArBr)] species through supramolecular binding of the Pd‐bound arene inside the calixarene cavity.  相似文献   

8.
Aromatic polyoxadiazole derivatives containing 9,9′‐dioctylfluorene were successfully synthesized via the Suzuki coupling reaction. The oxadiazole moiety in the polymer backbone was linked with the bis(hydroxyphenyl) group in its 2‐position to exhibit a large Stokes shift in the emission spectrum due to the excited‐state intramolecular proton transfer. To prepare the polymer via the Suzuki cross‐coupling reaction, the hydroxyl group in the monomer was protected with the t‐butoxycarbonyl group before polymerization and removed after polymerization to a desirable extent. The polymer with the free hydroxyl group showed a considerable sensitivity for nitroaromatic compounds, exhibiting fluorescence quenching in a chloroform solution. The interaction between the electron‐donating OH group and electron‐deficient nitroaromatic compounds seemed to play a decisive role in fluorescence quenching. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2059–2068, 2006  相似文献   

9.
An in situ‐generated catalytic system based on PdCl2 and primary amine‐based ligand exhibited excellent activity (up to 98% isolated yield) in the Suzuki–Miyaura cross‐coupling reactions of aryl bromides with arylboronic acids in water, at room temperature, without any additive. The efficiencies of the ligands follow the order: (C6H5)3CNH2 > C6H5CH2 NH2 > C6H5 NH2 > C6H11 NH2, which is in accordance with the palladacycle forming capacity of the respective ligands. Moderate‐to‐good yields (up to 78% isolated yield) of the coupling products were also obtained with less reactive aryl chlorides as substrates at room temperature in isopropanol using an alternative protocol based on Pd(OAc)2 and (C6H5)3CNH2. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Copper‐catalyzed Suzuki–Miyaura‐type cross‐coupling and carboboration processes are reported. The cross‐couplings function well with a variety of substituted aryl iodides and aryl boronic esters and allows for orthogonal reactivity compared to palladium‐catalyzed processes. The carboboration method includes both alkynes and allenes and provides access to highly substituted and stereodefined vinyl boronic esters. The alkyne carboboration method is highlighted in the simple one‐pot synthesis of Tamoxifen.  相似文献   

11.
A novel water‐soluble, phosphine‐free PEG "click" triazole palladacycle has been successfully synthesized. As a precatalyst, the palladacycle exhibited superior catalytic activity towards Suzuki‐Miyaura and copper‐free Sonogashira cross‐coupling in neat water with the turnover numbers (TONs) of up to 9.8×105. In addition, the catalyst could be reused at least 3 times without significant loss of reactivity.  相似文献   

12.
Triazene‐substituted arylboronic esters were prepared readily from the corresponding aryl magnesium derivatives and shown to function as a new class of donor–acceptor‐substituted coupling reagents. The selective functionalization of these aromatic derivatives led to a wide variety of terphenyl derivatives in which the original bifunctional unit (often further substituted with another functional group) formed the central aromatic ring. The functionalized terphenyl derivatives were formed in two efficient cross‐coupling steps from the triazene‐substituted boronic esters: Suzuki cross‐coupling with an aryl halide was followed by BF3?OEt2‐induced palladium‐catalyzed coupling of the diazonium salt generated in situ from the triazene with an arylboronic acid.  相似文献   

13.
A novel PdCl2/bis(2‐pyridylmethyl)amine‐based ligand ( 1 ) catalytic system, which is water‐soluble and air‐stable, has been successfully synthesized and applied for Suzuki‐Miyaura cross‐coupling reaction. In the presence of catalytic amount of PdCl2/ 1 system, arylboronic acids can couple with a wide range of aryl halides, including aryl bromides and aryl chlorides. The reactions proceed under mild conditions to give excellent yields, and a wide range of functionalities is tolerated.  相似文献   

14.
Pd/C‐catalyzed Suzuki–Miyaura cross‐coupling between aryl bromides and arylboronic acids in 50% methanol aqueous solution proceeded smoothly in the presence of 18‐crown‐6. Various aryl bromides bearing electron‐withdrawing groups and electron‐donating groups coupled with arylboronic acid in high yields. In addition, the catalyst could be recycled five times without loss of activity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
This work reported a convenient method for the preparation of enantiomerically pure 6‐aryl‐2,2′‐dihydroxy‐1,1′‐binaphthyl derivatives starting from the commercially available (R)‐2,2′‐hydroxy‐1,1′‐binaphthyl [(R)‐ 1 ] via bromination, hydrolysis and Suzuki cross coupling reaction. This novel synthetic method was characterized with high regioselectivity, simple operation, mild reaction conditions, and excellent yield (up to 73%). On the other hand, we synthesized the target unknown compounds, which were confirmed by IR, 1H NMR, 13C NMR, MS and elementary analysis.  相似文献   

16.
A Pd‐catalyzed direct cross‐coupling of two distinct aryl bromides mediated by tBuLi is described. The use of [Pd‐PEPPSI‐IPr] or [Pd‐PEPPSI‐IPent] as catalyst allows for the efficient one‐pot synthesis of unsymmetrical biaryls at room temperature. The key for this selective cross‐coupling is the use of an ortho‐substituted bromide that undergoes lithium–halogen exchange preferentially.  相似文献   

17.
Polytriarylamine copolymers can be prepared by Suzuki‐Miyaura cross‐coupling reactions of bis N‐methyliminodiacetic acid (MIDA) boronate ester substituted arylamines with dibromo arenes. The roles of solvent composition, temperature, reaction time, and co‐monomer structure were examined and (co)polymers prepared containing 9, 9‐dioctylfluorene (F8), 4‐sec‐butyl or 4‐octylphenyl diphenyl amine (TFB), and N, N′‐bis(4‐octylphenyl)‐N, N′‐diphenyl phenylenediamine (PTB) units, using a Pd(OAc)2/2‐dicyclohexylphosphino‐2′,6′‐dimethoxybiphenyl (SPhos) catalyst system. The performance of a di‐functionalized MIDA boronate ester monomer was compared with that of an equivalent pinacol boronate ester. Higher molar mass polymers were produced from reactions starting with a difunctionalized pinacol boronate ester monomer than the equivalent difunctionalized MIDA boronate ester monomer in biphase solvent mixtures (toluene/dioxane/water). Matrix‐assisted laser desorption/ionization mass spectroscopic analysis revealed that polymeric structures rich in residues associated with the starting MIDA monomer were present, suggesting that homo‐coupling of the boronate ester must be occurring to the detriment of cross‐coupling in the step‐growth polymerization. However, when comparable reactions of the two boronate monomers with a dibromo fluorene monomer were completed in a single phase solvent mixture (dioxane + water), high molar mass polymers with relatively narrow distribution ranges were obtained after only 4 h of reaction. © 2017 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2798–2806  相似文献   

18.
The use of a highly active, air‐, and moisture‐stable N‐heterocyclic carbene‐palladium(II) complex for the polymerization of anilines and aryl dibromides or dichlorides by Buchwald‐Hartwig coupling is presented. In comparison to previous catalytic systems, higher molecular weight polymers with improved yields were obtained in shorter reaction times. The first examples of fabrication of OFETs with polytriarylamines synthesized with aryl dichlorides and anilines are also presented. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4904–4911  相似文献   

19.
An agro waste‐derived, ‘water extract of pomegranate ash’ (WEPA), has been utilized for the first time as a renewable medium for Pd(OAc)2‐catalysed Suzuki–Miyaura cross‐coupling at room temperature. This method offers a simple and sustainable synthesis of biaryls from aryl halides and arylboronic acids under ligand‐ and external base‐free aerobic and ambient conditions. This method has been found effective for both activated and unactivated aryl halides in the production of biaryls with moderate to nearly quantitative yields. The protocol shows high chemoselectivity over identical/similar reactive sites in aryl halides (i.e. selectivity over identical halogens or different halogens of aryl halides). This method exhibits high regioselectivity, i.e. the selective reactivity of a halogen over other identical halogens at different positions on the aromatic nucleus. Therefore, we disclose here a clean, benign, substantial chemo‐ and regioselective and highly economic alternative method for the palladium‐assisted synthesis of biaryls using an agro waste‐derived medium.  相似文献   

20.
The synthesis of complex alkyl boronic esters through conjunctive cross‐coupling of vinyl boronic esters with carboxylic acids and aryl iodides is described. The reaction proceeds under mild metallaphotoredox conditions and involves an unprecedented decarboxylative radical addition/cross‐coupling cascade of vinyl boronic esters. Excellent functional‐group tolerance is displayed, and application of a range of carboxylic acids, including secondary α‐amino acids, and aryl iodides provides efficient access to highly functionalized alkyl boronic esters. The decarboxylative conjunctive cross‐coupling was also applied to the synthesis of sedum alkaloids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号