共查询到20条相似文献,搜索用时 15 毫秒
1.
Blandine Friederich Abdelghani Laachachi Rodolphe Sonnier Michel Ferriol Marianne Cochez Valérie Toniazzo David Ruch 《先进技术聚合物》2012,23(10):1369-1380
A comparison of alumina (Al2O3) and boehmite (AlOOH) in (ammonium polyphosphate/melamine polyphosphate/metal oxide) ternary system was performed in poly(methyl methacrylate) on thermal and fire‐resistance properties. A Design of Experiments (DoE) was then done for highlighting the best formulation out of both ternary systems. Laser flash analysis and scanning electron microscopy helped to explain some of the observations made by DoE. Mechanisms in both ternary systems during degradation also were investigated and modes of action could be presented based on pyrolysis‐combustion flow calorimetry, Raman spectroscopy and X‐ray diffraction. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
2.
Poly(D,L‐lactide‐co‐glycolide) 50:50 (PLGA)/graphene oxide (GO) nanocomposite films were prepared with various GO weight fractions. A significant enhancement of mechanical properties of the PLGA/GO nanocomposite films was obtained with GO weight fractions. The incorporation of only 5 wt% of GO resulted in an ~2.5‐fold and ~4.7‐fold increase in the tensile strength and Young's modulus of PLGA, respectively. The thermomechanical behaviors of composite films were investigated by dynamic mechanical analysis. Results indicated that the values of Tg and storage moduli of the PLGA/GO composites were higher than those of the pristine PLGA. The improvement in oxygen barrier properties of composites was presumably attributed to the filler effect of the randomly dispersed GO throughout the PLGA matrix. In this work, we also studied in vitro biodegradation behavior. PLGA/GO composite films were hydrolyzed at 37°C for periods up to 49 days. Because of the presence of GO nanosheets, degradation of composite films took place more slowly with increasing GO amounts. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
3.
K. Elen M. Murariu R. Peeters Ph. Dubois J. Mullens A. Hardy M. K. Van Bael 《先进技术聚合物》2012,23(10):1422-1428
The properties of nanocomposites of biodegradable polycaprolactone containing zinc oxide (ZnO) nanoparticles with diverse morphologies, that is, ZnO nanospheres, nanorods, and nanodisks are investigated. It is demonstrated for the first time that the dual action of the ZnO nanoparticles reduces the gas permeability of the nanocomposites via two mechanisms: first by the creation of a tortuous path and second by gas adsorption. Depending on the morphology of the particles, the oxygen permeability can be reduced by more than 60%. Tensile tests show that the nanocomposites remain very ductile. The nominal strain for all nanocomposites is higher than 500% before fracture occurs. The Young's modulus and tensile strength of the nanocomposites increase at higher ZnO concentrations. This behavior is more pronounced in the case of ZnO nanorods. As a result, the incorporation of ZnO nanoparticles into (bio)polymers provides an opportunity to manufacture polymer‐based nanocomposite materials, resulting in the production of high‐performance (bio)packaging. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
4.
Poly(styrene‐maleic anhydride)‐montmorillonite nanocomposites were prepared by intercalation of layered montmorillonite with the polymer ions. Synthetic approaches including polymerization and phosphonium salt formation have been used for polymer intercalation and dispersion of the host layers in the polymer matrix. The ratio of the mineral in the composites ranged 30–50%. Wide‐angle X‐ray diffraction (WAXD) disclosed that the d(001) spacing between the internal lamellar surface were only expanding to about 13 and 15 Å according to the type of phosphonium salt suggesting packing of polymer molecules between the layers. Examination of these materials by scanning and transmission electron microscopy showed spherical nano size particles of average diameter, 350 nm. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
5.
I. S. Bayer A. Biswas A. Tripathi D. K. Avasthi J. P. Singh C. M. Megaridis 《先进技术聚合物》2009,20(10):775-784
We report fabrication of thin (100~300 nm) poly(phenylene oxide) (PPO) films and their composites with poly (styrene) (PS) and silver (Ag) nanoparticles using a one‐step electron beam‐assisted vapor phase co‐deposition technique. Surface morphology and the structure of the deposited polymer thin film composites were characterized by FTIR, Raman, X‐ray spectroscopy, and contact angle measurements. As‐deposited PPO films and PPO/Ag composites were of porous nature and contrary to solvent casting techniques were free from nodular growth. In the case of PPO/PS thin film polymer composites, however, film morphology displayed nodular growth of PPO with nodule diameters of about ~200 nm and height of approximately 50 nm. Unique morphological changes on the porous PPO thin film surface were noticed at different Ag filling ratios. Further, the capacitance of PPO/Ag composites (<16 wt%) were measured under radio‐frequency conditions and they were functional up to 100 MHz with an average capacitance density of about 2 nF/cm2. The fabricated PPO‐based composite systems are discussed for their potential applications including embedded capacitor technology. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
6.
A novel adsorbent, Fe‐Mn‐Zr metal oxide nanocomposite was synthesized and investigated for removal of methyl orange (MO) and eosin yellow (EY) dyes from binary dye solution. The magnetic nanocomposite has shown surface area of 143.01 m2/g and saturation magnetization of 15.29 emu/g. Optimization was carried out via response surface methodology (RSM) for optimizing process variables, and optimum dye removal of 99.26% and 99.55% were obtained for MO and EY dye, respectively with contact time 62 min, adsorbent dose 0.45 g/l, initial MO concentration 11.0 mg/l, and initial EY concentration 25.0 mg/l. A feed forward back propagation neural network model has shown better prediction ability than RSM model for predicting MO and EY dye removal (%). Adsorption process strictly follows Langmuir isotherm model, and enhanced adsorption capacities of 196.07 and 175.43 mg/g were observed for MO and EY dye, respectively due to synergistic effects of physicochemical properties of trimetal oxides. Surface adsorption and pore diffusions are the mechanisms involved in the adsorption as revealed from kinetic studies. 相似文献
7.
Preparation of poly(vinylalcohol)/poly(acrylamide‐co‐vinyl imidazole)/γ‐Fe2O3 semi‐IPN nanocomposite and their application for removal of heavy metal ions from water 下载免费PDF全文
A series of magnetic semi‐interpenetrating polymer network (semi‐IPN) hydrogels was prepared in one‐stage strategy composed of linear poly(vinyl alcohol) (PVA) chains and magnetic γ‐Fe2O3 nanoparticles entrapped within the cross‐linked poly(acrylamide‐co‐vinylimidazole) (poly(AAm‐co‐VI)) network. The influence of PVA, weight ratio of AAm:VI, γ‐Fe2O3, and MBA on the swelling properties of the obtained nanocomposite hydrogels was evaluated. The prepared magnetic semi‐IPN hydrogels were fully characterized and used as absorbent for removal of Pb(II) and Cd(II) from water. Factors that influence the metal ion adsorption such as solution pH, contact time, initial metal ion concentration, and temperature were studied in details. The experimental results were reliably described by Langmuir adsorption isotherms. The adsorption capacity of semi‐IPN nanocomposite for Pb(II) and Cd(II) were175.80 and 149.76 mg g?1, respectively. The kinetic experimental data indicated that the chemical sorption is the rate‐determining step. According to thermodynamic studies, Pb(II) and Cd(II) adsorption on the hydrogels was endothermic and also chemical in nature. The prepared magnetic PVA/poly(AAm‐co‐VI) semi‐IPN hydrogels could be employed as efficient and low‐cost adsorbents of heavy metal ions from water. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
8.
A facile preparation method for synthesis of silica sulfuric acid/poly(o‐methoxyaniline) core–shell nanocomposite 下载免费PDF全文
A new nanocomposite of poly(o‐methoxyaniline) (POMA) is introduced by overlayer formation of POMA on silica. The key appealing feature of the synthesis is the role of silica sulfuric acid (SSA) both as solid acid dopant and template in overlayer self‐assembly of POMA on silica surface. Hereon siloxide group (Si―O?) of silica surface is replaced with dopant anion of SSA (≡Si―O―SO3?), which leads to formation of a overlayer of POMA on the silica surface. The composite particles are spherical in the nanoscale range of 50 nm without application of any external template (no‐template synthesis). Nanocomposite was fully characterized by various instrumentation methods: Fourier transform infrared (FT‐IR), ultraviolet–visible (UV–vis), thermogravimetric analysis (TGA), diffrential thermal analysis (DTA), elemental analysis (CHNS), energy dispersive X‐ray (EDX), X‐ray photoelectron spectroscopy (XPS) and X‐ray difraction (XRD). Based on XPS and CHNS results, it is demonstrated that the doping level of POMA is as high as 50% and for the first time the ratio of 4:2:2 is obtained for ―NH― (amine): ―HN.+― (polarons): ?HN+― (bipolarons), respectively. In fact, bipolarons may also coexist with polarons with a 1:1 ratio of them. Moreover, the synthesis benefits from the perspective of green chemistry which is preparation under solid‐state (solvent‐free) condition. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
9.
Poly(o‐anisidine) (POA) and poly(o‐anisidine)‐TiO2 (POA‐TiO2) nanocomposite coatings on aluminum alloy 3004 (AA3004) have been investigated by using the galvanostatic method. The electrosynthesized coatings were characterized by FT ‐ IR spectroscopy, XRD, SEM ‐ EDX and SEM. The corrosion protection performance of POA and POA‐TiO2 nanocomposite coatings was investigated in the 3.5% NaCl solution by using potentiodynamic polarization technique and electrochemical impedance spectroscopy. The results show that the corrosion rate of the nanocomposite coatings is about 900 times lower than the bare AA3004 under optimal conditions. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
10.
Facile synthesis of poly(DMC‐co‐HPA) hydrogels via infrared laser ignited frontal polymerization and their adsorption–desorption switching performance 下载免费PDF全文
Yang Li Shengyang Yang Cai‐Feng Wang Su Chen 《Journal of polymer science. Part A, Polymer chemistry》2015,53(18):2085-2093
In this work, we report a versatile infrared laser ignited frontal polymerization technique for the fabrication of a series of poly(DMC‐co‐HPA) hydrogels (DMC = methacryloxyethyltrimethyl ammonium chloride, HPA = hydroxypropyl acrylate). Because the method is based on the exothermic reaction, no further energy is required in the reaction once it is initiated. Moreover, we have found the polymerization process is a pure frontal polymerization model without involving any other reaction process. The dependence of frontal velocity and temperature on the reaction time is thoroughly discussed. The as‐prepared hydrogels are pH‐responsive and their maximum equilibrium swelling ratio could reach ~3,890%. Also, the as‐prepared poly(DMC‐co‐HPA) hydrogels capable of adsorption/desorption switching performance can be utilized for heavy metal ion removal in wastewater treatments. Interestingly, the hydrogels can float on the water surface after intaking heavy metal ions by the combination of kerosene and polyoxyethylene sorbitan monolaurate (Tween 20) in hydrogel components, greatly enhancing treatment efficiency. We believe the method described herein to rapidly construct functional hydrogels with the ability to remove heavy metal ions may find unique applications in emergency processing of water pollution. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2085–2093 相似文献
11.
Sungil Moon Masatoshi Iji 《Journal of polymer science. Part A, Polymer chemistry》2008,46(13):4433-4441
A new poly(butylene succinate) (PBS)‐grafted vapor grown carbon fiber (VGCF)/poly(L ‐lactide) (PLLA) nanocomposites were successfully prepared by an in situ condensation reaction between PBS (Mw = 6,000) and surface oxidized VGCF, followed by direct melt mixing technique, and their mechanical and thermal properties were evaluated. Fourier transform infrared spectroscopy and scanning electron microscopy studies indicate a chemical interaction between the PBS and the surface of VGCF. It was found that the maximum tensile strength and modulus of PBS‐grafted VGCF/PLLA nanocomposites were 135 MPa (27% increase relative to neat PLLA) and 4,400 MPa (29% increase relative to neat PLLA), respectively. The results indicate that significant improvement in the mechanical properties can be accomplished by optimizing the surface modification conditions for VGCF. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4433–4441, 2008 相似文献
12.
pH/temperature double responsive behaviors and mechanical strength of laponite‐crosslinked poly(DEA‐co‐DMAEMA) nanocomposite hydrogels 下载免费PDF全文
Huili Li Ronglan Wu Jinlong Zhu Pingping Guo Wenchen Ren Shimei Xu Jide Wang 《Journal of Polymer Science.Polymer Physics》2015,53(12):876-884
A nanocomposite (NC) hydrogel crosslinked by inorganic Laponite XLG was successfully synthesized via in situ free radical polymerization of monomers N,N‐diethylacrylamide and (2‐dimethylamino) ethyl methacrylate (DMAEMA). Polymerization was carried out at room temperature due to the accelerating effect of DMAEMA. The as‐prepared hydrogels displayed controlled transformation in optical transmittance and volume in response to small diversification of environmental factors, such as temperature and pH. The compressive strength of swollen D6:1G6 hydrogels was as high as 2219 kPa while compressive strain was 95%. Cyclic compression measurement exhibited good elastic properties of NC hydrogels. This work provides a facile method for fabricating stimuli‐responsive hydrogels with superior mechanical property. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 876–884 相似文献
13.
Mahua G. Dhara Durairaj Baskaran Swaminathan Sivaram 《Journal of polymer science. Part A, Polymer chemistry》2008,46(6):2132-2144
The synthesis of well‐defined poly(methyl methacrylate)‐block‐poly(ethylene oxide) (PMMA‐b‐PEO) dibock copolymer through anionic polymerization using monohydroxy telechelic PMMA as macroinitiator is described. Living anionic polymerization of methyl methacrylate was performed using initiators derived from the adduct of diphenylethylene and a suitable alkyllithium, either of which contains a hydroxyl group protected with tert‐butyldimethylsilyl moiety in tetrahydrofuran (THF) at ?78 °C in the presence of LiClO4. The synthesized telechelic PMMAs had good control of molecular weight with narrow molecular weight distribution (MWD). The 1H NMR and MALDI‐TOF MS analysis confirmed quantitative functionalization of chain‐ends. Block copolymerization of ethylene oxide was carried out using the terminal hydroxyl group of PMMA as initiator in the presence of potassium counter ion in THF at 35 °C. The PMMA‐b‐PEO diblock copolymers had moderate control of molecular weight with narrow MWD. The 1H NMR results confirm the absence of trans‐esterification reaction of propagating PEO anions onto the ester pendants of PMMA. The micellation behavior of PMMA‐b‐PEO diblock copolymer was examined in water using 1H NMR and dynamic light scattering. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2132–2144, 2008 相似文献
14.
Bin Zhang Yu Chen Liqun Xu Longjia Zeng Ying He En‐Tang Kang Jinjuan Zhang 《Journal of polymer science. Part A, Polymer chemistry》2011,49(9):2043-2050
A new approach on usage of S‐1‐dodecyl‐S′‐(α,α′‐dimethyl‐α″‐acetic acid)trithiocarbonate (DDAT)‐covalently functionalized graphene oxide (GO) as reversible addition fragmentation chain transfer (RAFT) agent for growing of poly(N‐vinylcarbazole) (PVK) directly from the surface of GO was described. The PVK polymer covalently grafted onto GO has Mn of 8.05 × 103, and a polydispersity of 1.43. The resulting material PVK‐GO shows a good solubility in organic solvents when compared to GO, and a significant energy bandgap of ~2.49 eV. Bistable electrical switching and nonvolatile rewritable memory effect, with a turn‐on voltage of about ?1.7 V and an ON/OFF state current ratio in excess of 103, are demonstrated in the Al/PVK‐GO/ITO structure. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
15.
Catherine Bianchi Bruno Grassl Bernard Franois Christine Dagron‐Lartigau 《Journal of polymer science. Part A, Polymer chemistry》2005,43(19):4337-4350
Water‐soluble and photoluminescent block copolymers [poly(ethylene oxide)‐block‐poly(p‐phenylene vinylene) (PEO‐b‐PPV)] were synthesized, in two steps, by the addition of α‐halo‐α′‐alkylsulfinyl‐p‐xylene from activated poly(ethylene oxide) (PEO) chains in tetrahydrofuran at 25 °C. This copolymerization, which was derived from the Vanderzande poly(p‐phenylene vinylene) (PPV) synthesis, led to partly converted PEO‐b‐PPV block copolymers mixed with unreacted PEO chains. The yield, length, and composition of these added sequences depended on the experimental conditions, namely, the order of reagent addition, the nature of the monomers, and the addition of an extra base. The addition of lithium tert‐butoxide increased the length of the PPV precursor sequence and reduced spontaneous conversion. The conversion into PPV could be achieved in a second step by a thermal treatment. A spectral analysis of the reactive medium and the composition of the resulting polymers revealed new evidence for an anionic mechanism of the copolymerization process under our experimental conditions. Moreover, the photoluminescence yields were strongly dependant on the conjugation length and on the solvent, with a maximum (70%) in tetrahydrofuran and a minimum (<1%) in water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4337–4350, 2005 相似文献
16.
Chen Cai Lu Wang Chang‐Ming Dong 《Journal of polymer science. Part A, Polymer chemistry》2006,44(6):2034-2044
Well‐defined poly(L ‐lactide)‐b‐poly(ethylene oxide) (PLLA‐b‐PEO) copolymers with different branch arms were synthesized via the controlled ring‐opening polymerization of L ‐lactide followed by a coupling reaction with carboxyl‐terminated poly(ethylene oxide) (PEO); these copolymers included both star‐shaped copolymers having four arms (4sPLLA‐b‐PEO) and six arms (6sPLLA‐b‐PEO) and linear analogues having one arm (LPLLA‐b‐PEO) and two arms (2LPLLA‐b‐PEO). The maximal melting point, cold‐crystallization temperature, and degree of crystallinity (Xc) of the poly(L ‐lactide) (PLLA) block within PLLA‐b‐PEO decreased as the branch arm number increased, whereas Xc of the PEO block within the copolymers inversely increased. This was mainly attributed to the relatively decreasing arm length ratio of PLLA to PEO, which resulted in various PLLA crystallization effects restricting the PEO block. These results indicated that both the PLLA and PEO blocks within the block copolymers mutually influenced each other, and the crystallization of both the PLLA and PEO blocks within the PLLA‐b‐PEO copolymers could be adjusted through both the branch arm number and the arm length of each block. Moreover, the spherulitic growth rate (G) decreased as the branch arm number increased: G6sPLLA‐b‐PEO < G4sPLLA‐b‐PEO < G2LPLLA‐b‐PEO < GLPLLA‐b‐PEO. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2034–2044, 2006 相似文献
17.
Tzong‐Ming Wu Shiang‐Jie Yen Erh‐Chiang Chen Ray‐Kuang Chiang 《Journal of Polymer Science.Polymer Physics》2008,46(7):727-733
This study describes the preparation of a nanocomposites fabricated from monodispersed 4‐nm iron oxide (Fe3O4) coated on the surface of carboxylic acid containing multi‐walled carbon nanotube (c‐MWCNT) and polypyrrole (PPy) by in situ chemical oxidative polymerization. High‐resolution transmission electron microscopy images and X‐ray diffraction (XRD) data indicate that the resulting Fe3O4 nanoparticles synthesized using the thermal decomposition are close to spherical dots with a particle size about 4 ± 0.2 nm. The resulting nanoparticles were further mixed with c‐MWCNT in an aqueous solution containing with anionic surfactant sodium bis(2‐ethylhexyl) sulfosuccinate to form one‐dimensional Fe3O4 coated c‐MWCNT template for further preparation of nanocomposite. Structural and morphological analysis using field‐emission scanning electron microscopy, high‐resolution transmission electron microscopy, and XRD showed that the fabricated Fe3O4 coated c‐MWCNT/PPy nanocomposites are one‐dimensional core (Fe3O4 coated c‐MWCNT)‐shell (PPy) structures. The conductivities of these Fe3O4 coated c‐MWCNT/PPy nanocomposites are about four times higher than those of pure PPy matrix. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 727–733, 2008 相似文献
18.
Three‐Dimensional NiMoO4 Nanosheets Supported on a Carbon Fibers@Pre‐Treated Ni Foam (CF@PNF) Substrate as Advanced Electrodes for Asymmetric Supercapacitors 下载免费PDF全文
Caixia Zhou Dr. Wen Yang Guangfeng Zeng Dr. Ying Lei Li Gu Xianghui Xi Prof. Dan Xiao 《化学:亚洲杂志》2015,10(8):1745-1752
Herein, we report a nanoarchitectured nickel molybdate/carbon fibers@pre‐treated Ni foam (NiMoO4/CF@PNF) electrode for supercapacitors. The synthesis of NiMoO4/CF@PNF mainly consists of a direct chemical vapor deposition (CVD) growth of dense carbon fibers (CFs) onto pre‐treated Ni foam (PNF) as the substrate, followed by in situ growth of NiMoO4 nanosheets (NSs) on the CF@PNF substrate by means of a hydrothermal process. The NiMoO4/CF@PNF electrode exhibits a high areal capacitance (5.14 F cm?2 at 4 mA cm?2) and excellent cycling stability (97 % capacitance retention after 2000 cycles at 10 mA cm?2). Furthermore, we have successfully assembled NiMoO4 NSs//activated carbon (AC) asymmetric supercapacitors, which can achieve an energy density of 45.6 Wh kg?1 at 674 W kg?1, and excellent stability with 93 % capacitance retention after 2000 cycles at 5 mA cm?2. These superior properties hold great promise for energy‐storage applications. 相似文献
19.
Core–shell functionalized MWCNT/poly(m‐aminophenol) nanocomposite with large dielectric permittivity and low dielectric loss 下载免费PDF全文
Core–shell carboxyl‐functionalized multiwall carbon nanotube (c‐MWCNT)/poly(m‐aminophenol) (PmAP) nanocomposite were prepared through in‐situ polymerization of m‐aminophenol (m‐AP) in the presence of MWCNTs, and explicated as a dielectric material for electronic applications. The formation of thin PmAP layer on individual c‐MWCNT with excellent molecular level interactions at interfaces was confirmed by morphological and spectroscopic analyses. Here we conducted a comparative study of the dielectric performances of PmAP based nanocomposite films with pristine MWCNTs and c‐MWCNTs as fillers. Compared to PmAP/MWCNT nanocomposites, the PmAP/c‐MWCNT nanocomposites exhibited higher dielectric permittivity and lower dielectric loss. The well dispersed c‐MWCNTs in PmAP/c‐MWCNT nanocomposite produce huge interfacial area together with numerous active polarized centers (crystallographic defects), which in turn intensified the Maxwell‐Wagner‐Sillars (MWS) effect based on excellent molecular level interactions and thus, produce large dielectric permittivity (8810 at 1 kHz). The percolation threshold of PmAP/c‐MWCNT nanocomposites is found lower than that of the PmAP/MWCNT nanocomposites, which could be attributed to homogeneous distribution of c‐MWCNTs and strong c‐MWCNT//PmAP interfacial interactions in the nanocomposites. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
20.
Kenji Kinashi Yuki Kambe Masahiro Misaki Yasuko Koshiba Kenji Ishida Yasukiyo Ueda 《Journal of polymer science. Part A, Polymer chemistry》2012,50(24):5107-5114
Three types of bi‐functionalized copolymers ( P1FAz , P2FAz , and P3FAz ) with different numbers of fluorene units and an azobenzene unit were synthesized and characterized using UV–vis and polarized absorption spectroanalysis. The trans‐cis photoisomerization was conformed under 400 nm light irradiation for all copolymers in chloroform. However, in the film state, only the trans‐cis photoisomerization occurred by mono‐fluorene attached copolymer poly[(9,9‐di‐n‐octylfluorenyl‐2,7‐diyl)‐alt‐4,4′‐azobenzene)] ( P1FAz ). Photo‐induced alignment was achieved using the P1FAz film after irradiation with linear polarized 400 nm light and subsequent annealing at 60 °C. Surface orientation of a spin‐coating film of poly(9,9‐didodecylfluorene) ( F12 ) was achieved using the photo‐induced alignment layer of the P1FAz film after annealing at 90 °C. The photo‐induced alignment layer of P1FAz has potential application to the surface orientation technique for appropriate polymers, which will be useful for the fabrication of optoelectronics devices. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献