首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of dyeing on melting behavior of poly(lactic acid) fabric   总被引:5,自引:0,他引:5  
The effect of the dyeing on the melting behavior of poly(lactic acid) fabrics was investigated by differential scanning calorimeter. The DSC melting peaks at 10°C min-1 of the untreated poly(lactic acid) fabric were observed at a temperature higher than those of the dyed fabrics. The restricting force from the extended tie molecules along the fiber axis seems to decrease in the dyeing process. When the sample was rapidly heated, the crystallites melted at lower temperatures since recrystallization was restricted. It was estimated, based on the heating-rate dependency of melting behavior, that the original crystallites of the untreated sample melted at 146.1°C and those of the dyed samples melted at higher temperatures, suggesting that their crystallites are grown to be more perfect in the dyeing process. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The glass transition and melting behavior of poly(ether-ester) multiblock copolymers with poly(tetramethylene isophthalate) (PTMI) hard segments and poly(tetramethylene oxide) (PTMO) soft segments are studied by differential scanning calorimetry (DSC) and small- and wide-angle x-ray scattering (SAXS and WAXS). Thermodynamic melting parameters for the PTMI homopolymer are estimated by WAXS and from the dependence of melting point on crystallization temperature. The melting behavior of PTMI is characterized by dual endotherms which are qualitatively representative of the original morphology, although reorganization effects are present. The composition dependence of the glass transition temperature parameters after rapid quenching from the melt are well described by mixed phase correlations for copolymers in the range 30-100 wt% hard segment. Combined with SAXS characterization at melt temperatures, a single phase melt is suggested in these materials which extends to temperatures below the hard segment melting point. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
The melting behavior of isothermally crystallized PET has been studied using linear heating in a differential scanning calorimeter (DSC). Variables such as crystallization temperature, crystallization time, heating rate, and average molecular weight are the main focus of the study. On the basis of several experimental techniques, a correlation of the melting behavior of PET with the amount of secondary crystallization was found to exist. It was observed that the triple melting of PET is a function of programmable DSC variables such as crystallization temperature, crystallization time, and heating rate. However, in testing the hypothesis that there was a correlation between melting endotherms and secondary crystallization inside spherulites, it was found necessary to use a DSC-independent variable in order to enhance the observed effects. Therefore, on the basis of a crystallization model that involves secondary branching along the edges of parent lamellar structures, it was speculated that an increase in the average molecular weight could affect the triple melting of PET due to an increase of rejected portions of the macromolecules. It was found that the second melting endotherm increased, apparently, at the expense of the third one as the average molecular weight was increased. The second melting endotherm was also found to correlate proportionally with the amount of secondary crystallization inside spherulites. The results support a model of crystallization which basically consists of parent crystals and at least one population of secondary, probably metastable, crystals. This latter structural component must involve excluded portions of the macromolecules that did not crystallize during the isothermal crystallization period of the parent crystals. An increase of molecular weight gives rise to a higher entanglement density which in turn increases the fraction of initially rejected chain sections and therefore the amount of secondary crystallization. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1757–1774, 1997  相似文献   

4.
Copolyester was synthesized and characterized as having 89.9 mol % ethylene succinate units and 10.1 mol % butylene succinate units in a random sequence, as revealed by NMR. Isothermal crystallization kinetics was studied in the temperature range (Tc) from 30 to 73 °C using differential scanning calorimetry (DSC). The melting behavior after isothermal crystallization was investigated using DSC by varying the Tc, the heating rate and the crystallization time. DSC curves showed triple melting peaks. The melting behavior indicates that the upper melting peaks are associated primarily with the melting of lamellar crystals with various stabilities. As the Tc increases, the contribution of recrystallization slowly decreases and finally disappears. A Hoffman‐Weeks linear plot gives an equilibrium melting temperature of 107.0 °C. The spherulite growth of this copolyester from 80 to 20 °C at a cooling rate of 2 or 4 °C/min was monitored and recorded using an optical microscope equipped with a CCD camera. Continuous growth rates between melting and glass transition temperatures can be obtained after curve‐fitting procedures. These data fit well with those data points measured in the isothermal experiments. These data were analyzed with the Hoffman and Lauritzen theory. A regime II → III transition was detected at around 52 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2431–2442, 2008  相似文献   

5.
The multiple melting behavior of several commercial resins of isotactic polypropylene (iPP) and random copolymer, poly(propylene-co-ethylene) (PPE), after stepwise isothermal crystallization (SIC) were studied by differential scanning calorimeter and wide-angle X-ray diffraction (WAXD). For iPP samples, three typical melting endotherms appeared after SIC process when heating rate was lower than 10 °C/min. The WAXD experiments proved that only α-form crystal was formed during SIC process and no transition from α1- to α2-form occurred during heating process. Heating rate dependence for each endotherm was discussed and it was concluded that there were only two major crystals with different thermal stability. For the PPE sample, more melting endotherms appeared after stepwise isothermal crystallization. The introduction of ethylene comonomer in isotactic propylene backbone further decreased the regularity of molecular chain, and the short isotactic propylene sequences could crystallize into γ-form crystal having a low melting temperature whereas the long sequences crystallized into α-form crystal having high melting temperature.  相似文献   

6.
The polymorphic crystalline structure and melting behavior of biodegradable poly(butylene adipate) (PBA) samples melt‐crystallized at different crystallization temperatures were studied by differential scanning calorimetry (DSC) and fourier transform infrared (FTIR) spectroscopy. The crystalline structure and melting behavior of PBA were found to be greatly dependent on the crystallization temperature. By comparison of the FTIR spectra and the corresponding second derivatives between the α‐ and β‐crystal of PBA, the spectral differences were identified for the IR bands appeared at 1485, 1271, 1183, and 930 cm?1 and the possible reasons were presented. Especially, the 930 cm?1 band was found to be a characteristic band for the β‐crystal. Combining the DSC data with the analysis of normalized intensity changes of several main IR bands during the melting process, the melting behaviors of the α‐ and β‐crystal were clarified in detail. It is demonstrated by the in situ IR measurement that the β‐crystalline phase would transform into the α‐crystalline phase during the melting process, and the solid–solid phase transition from the β‐ to α‐crystal was well elucidated by comparing the intensity changes of the 1170 and 930 cm?1 bands. The dependence of the β‐ to α‐crystal phase transition on the heating rate was revealed by monitoring the intensity ratio of the 909 and 930 cm?1 band. It was suggested that at the heating rate of 0.5 or 1 °C/min, the percent amount of the transformed α‐crystal from the β‐crystal was much higher than that at the higher heating rate. The β‐crystal transforms into the α‐crystal incompletely at the higher heating rate because of the less time available for the phase transition. In addition, the β‐ to α‐crystal phase transition was further confirmed by the IR band shifts during the melting process. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1997–2007, 2009  相似文献   

7.
A series of copolyesters were prepared by the incorporation of p‐hydroxybenzoic acid (HBA), hydroquinone (HQ), and terephthalic acid (TA) into poly(ethylene terephthalate) (PET). On the basis of viscosity measurements, high molar mass copolyesters were obtained in the syntheses, and 1H‐NMR analyses indicated the total insertion of comonomers. They exhibit nematic phase above melting temperature, as observed by polarized light microscope (PLM). Their crystallization and melting behaviors were also studied by differential scanning calorimetry (DSC) and wide angle X‐ray diffraction (WAXD). It was found that these copolyesters are more crystalline than copolyesters prepared from PET and HBA. Introduction of HQ/TA disrupts longer rigid‐rod sequences formed by HBA, and thus enhances molecular motion and increases crystallization rate and crystallinity. Isothermal crystallization at solid phase polymerization conditions (up to 24 h at 200°C) resulted in increased copolymer randomness (by NMR) and higher melting point, the latter attributed to structural annealing. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 369–377, 1999  相似文献   

8.
In this study, we report the melting behavior of poly(phenylene sulfide), PPS, which has been cold-crystallized from the rubbery amorphous state. We find that the crystallization kinetics are faster for cold-crystallized PPS than for melt-crystallized material, due to formation during quenching of a short-range ordered, but noncrystalline, structure. We observe that the endothermic response of cold-crystallized PPS at a large undercooling consists of a low temperature endotherm, followed by an exothermic region, and by the main higher melting endotherm. The lower melting peak temperature of cold-crystallized PPS increases as the crystallization temperature increases, but the main upper melting peak temperature remains almost the same. The size of the exothermic region is strongly related to the degree of undercooling, and must be taken into account in order properly to determine the degree of crystallinity of the material prior to the scan. When the crystallization time is varied, we see a systematic decrease in the size of the main endotherm, and an increase in size of the lower melting endotherm. This suggests that a portion of the main endothermic response is due to reorganization during the scan. Annealing will not only increase the degree of crystallinity but also improve the crystal perfection; therefore the ability of an annealed sample to reorganize decreases as the annealing time increases. However, an additional third melting peak is seen when a cold-crystallized sample is annealed at high temperature for a sufficiently long residence time. The existence of the third melting peak suggests that more than one kind of distribution of crystal perfection may occur when PPS has been cold-crystallized and subsequently annealed.  相似文献   

9.
The melting behavior of poly(butylene terephthalate) (PBT) has been investigated, and a simulation has been performed to determine whether the multiple melting endotherms observed during the thermal analysis of PBT can be explained by the simultaneous melting and recrystallization of an initial distribution of crystal melting temperatures that contains only one maximum and two inflection points. Specimens that were cooled at constant rates from the melt showed between one and three melting endotherms upon heating in a differential scanning calorimeter (DSC). The position and breadth of the crystallization exotherms upon cooling from the melt and small-angle x-ray scattering showed that as the cooling rate is increased, the distribution of melting temperatures broadens and shifts to lower temperatures. By combining temperature-dependent recrystallization with an initial distribution of melting temperatures, simulated DSC curves were produced that agreed well with experimental DSC curves. In instances of triple peaked curves, the high temperature peak was due to crystals formed during the scanning process, and the middle and low temperature peaks were due to crystals originally present in the material. Satisfactory agreement between the experimental and simulated curves was found without considering additional crystallization from the amorphous regions during the scanning process.  相似文献   

10.
11.
In this work, multiwalled carbon nanotubes (MWNTs) were surface‐modified and grafted with poly(L ‐lactide) to obtain poly(L ‐lactide)‐grafted MWNTs (i.e. MWNTs‐g‐PLLA). Films of the PLLA/MWNTs‐g‐PLLA nanocomposites were then prepared by a solution casting method to investigate the effects of the MWNTs‐g‐PLLA on nonisothermal and isothermal melt‐crystallizations of the PLLA matrix using DSC and TMDSC. DSC data found that MWNTs significantly enhanced the nonisothermal melt‐crystallization from the melt and the cold‐crystallization rates of PLLA on the subsequent heating. Temperature‐modulated differential scanning calorimetry (TMDSC) analysis on the quenched PLLA nanocomposites found that, in addition to an exothermic cold‐crystallization peak in the range of 80–120 °C, an exothermic peak in the range of 150–165 °C, attributed to recrystallization, appeared before the main melting peak in the total and nonreversing heat flow curves. The presence of the recrystallization peak signified the ongoing process of crystal perfection and, if any, the formation of secondary crystals during the heating scan. Double melting endotherms appeared for the isothermally melt‐crystallized PLLA samples at 110 °C. TMDSC analysis found that the double lamellar thickness model, other than the melting‐recrystallization model, was responsible for the double melting peaks in PLLA nanocomposites. Polarized optical microscopy images found that the nucleation rate of PLLA was enhanced by MWNTs. TMDSC analysis found that the incorporation of MWNTs caused PLLA to decrease the heat‐capacity increase (namely, ΔCp) and the Cp at glass transition temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1870–1881, 2007  相似文献   

12.
Thermal analyses were performed for determining the equilibrium melting temperatures T of the respective α‐ and β‐crystal in melt‐crystallized polymorphic poly(heptamethylene terephthalate) (PHepT) using both linear and nonlinear Hoffman‐Weeks (H‐W) methods for comparison of validity. These two crystals in PHepT do not differ much in their melting temperatures. The equilibrium melting temperatures of the α‐ and β‐crystal as determined by the linear H‐W method are 98 °C and 100.1 °C, respectively; but the nonlinear H‐W method yielded higher values for both crystals. The equilibrium melting temperatures of the α‐ and β‐crystal according to the nonlinear H‐W method are 121 °C and 122.5 °C, respectively. Both methods consistently indicate that T of the β‐crystal is only slightly higher than that of the α‐crystal. Such small difference in T between the α‐ and the β‐crystal causes difficulties in judging the relative thermodynamic stability of these two crystals. Thus, kinetics of these two crystals was compared using the Avrami and Ozawa theory. The crystallization produced by quenching from Tmax = 110 °C and 150 °C shows a heterogeneous and homogeneous nucleation mechanism, respectively. The lower Tmax = 110 °C leads to heterogeneous nucleation and only α‐crystal in PHepT, whose crystallization rates at same Tc are much higher than crystallization rates by quenching from Tmax = 150 °C leading to either α‐ or β‐crystal with homogeneous nucleation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1839–1851, 2009  相似文献   

13.
After isothermal crystallization, poly(ethylene terephthalate) (PET) showed double endothermic behavior in the differential scanning calorimetry (DSC) heating scan. During the heating scans of semicrystalline PET, a metastable melt which comes from melting thinner lamellar crystal populations formed between the low and the upper endothermic temperatures. The metastable melt can recrystallize immediately just above the low melting temperature and form thicker lamellae than the original ones. The thickness and perfection depends on the crystallization time and crystallization temperature. The crystallization kinetics of this metastable melt can be determined by means of DSC. The kinetics analysis showed that the isothermal crystallization of the metastable PET melt proceeds with an Avrami exponent of n = 1.0 ∼ 1.2, probably reflecting one‐dimensional or irregular line growth of the crystal occurring between the existing main lamellae with heterogeneous nucleation. This is in agreement with the hypothesis that the melting peaks are associated with two distinct crystal populations with different thicknesses. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 53–60, 2000  相似文献   

14.
Poly(2-methylpentamethylene terephthalamide) (Nylon M5T) is a new high temperature aromatic polyamide developed by Hoechst Celanese. In this paper thermal properties of Nylon M5T chips, as well as as-spun and drawn fibers were studied by DSC, DMA, hot stage microscopy and WAXS.T g of the fully amorphous Nylon M5T is 143°C when measured by DSC;T g increases with crystallinity to 151°C. The temperature dependence of the solid and melt specific heat capacities has also been determined. The heat capacity increase at the glass transition of the amorphous polymer is 103.9 J °C–1 mol–1.T g by DMA for the as-spun fiber is 155°C, for a drawn fiber is 180°C. Three secondary transitions were observed by DMA in addition to the glass transition. These correspond to a local mode relaxation of the methylene groups at –120°C, onset of rotation of the amide-groups at –65°C and the onset of the rotation of the phenylenegroups (at 63°C). The crystallinity of Nylon M5T strongly depends on the rate of cooling from the melt. The isothermal crystallization data are melt temperature dependent: two-dimensional crystallization takes place when the samples are crystallized from higher melt temperatures, and this phase changes into a spherulitic structure during cooling to room temperature. Spherulitic crystallization occurs when lower melt temperatures are used. This polymer has three crystal forms as indicated by DSC, DMA and WAXS data. The crystal to crystal transitions are clearly visible when amorphous samples are heated in the DSC, or the DMA curves of as-spun fibers are recorded. It is experimentally shown that a considerable melting of the lower temperature crystal forms takes place during the crystal to crystal transitions. The equilibrium melting point as measured by the Hoffman-Weeks method, has been determined to be 339°C.Dedicated to Professor Bernhard Wunderlich on the occasion of his 65th birthday  相似文献   

15.
The double melting behavior of poly(butylene terephthalate) (PBT) was studied with differential scanning calorimetry (DSC) and wide‐angle X‐ray analysis. DSC melting curves of melt‐crystallized PBT samples, which we prepared by cooling from the melt (250 °C) at various cooling rates, showed two endothermic peaks and an exothermic peak located between these melting peaks. The cooling rate effect on these peaks was investigated. The melt‐crystallized PBT sample cooled at 24 K min?1 was heated at a rate of 1 K min?1, and its diffraction patterns were obtained successively at a rate of one pattern per minute with an X‐ray measurement system equipped with a position‐sensitive proportional counter. The diffraction pattern did not change in the melting process, except for the change in its peak height. This suggests that the double melting behavior does not originate from a change in the crystal structure. The temperature dependence of the diffraction intensity was obtained from the diffraction patterns. With increasing temperature, the intensity decreased gradually in the low‐temperature region and then increased distinctly before a steep decrease due to the final melting. In other words, the temperature‐dependence curve of the diffraction intensity showed a peak that is interpreted as proof of the recrystallization in the melting process. The peak temperature was 216 °C. The temperature‐dependence curve of the enthalpy change obtained by the integration of the DSC curve almost coincided with that of the diffraction intensity. The double melting behavior in the heating process of PBT is concluded to originate from the increase of crystallinity, that is, recrystallization. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2005–2015, 2001  相似文献   

16.
The melting behavior, crystallization behavior, and morphology of PBSR, which is Poly(butylene succinate) modified with rosin maleopimaric acid anhydride (RMA), were investigated with differential scanning calorimetry (DSC) and polarized optical microscope (POM). The multiple endotherms were ascribed to the recrystallization during DSC measurement and the equilibrium melting temperature determined by the Peak L, which was associated with the fusion of the crystals grown by normal primary crystallization, was 125.9 °C. After the kinetic parameters for isothermal crystallization of PBSR were determined by Avrami equation, to make a detailed regime transition analysis, the well‐established Lauritzen–Hoffman equation was employed. The results indicated that there were two regimes, regime II and regime III, in the range of higher and lower crystallization temperature, respectively. The regime transition temperature is about 81 °C. At last, the spherulitic morphologies of PBSR after being crystallized isothermally at different temperature were observed with the help of POM. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2694–2704, 2005  相似文献   

17.
18.
By focusing on cold-crystallized poly(ether diphenyl ether metaketone) (PEKm), a more in-depth understanding of the nature of the crystalline morphology has been gained, which may lead to thorough mechanisms for interpreting the observed thermal behavior in PEKm. Apparently, cold-crystallized PEKm containing initially only a single P1 crystal can exhibit dual melting peaks (300 and 320 °C), with the second high-melting peak corresponding to the P2 crystal that was subsequently formed via P1 melting/repacking during the scan. However, dual morphism (preexisting P1 and P2 crystals) could be intentionally introduced into PEKm if it was cold-crystallized at temperature schemes of decreasing order. The P1 and P2 crystals possess the same unit cells (orthorhombic) and thus they differ only in the lamellae populations. The dual lamellar morphism in this PEKm sample also exhibited similar dual melting peaks during scanning, which correspond to melting of the individual P1 and P2 in a sequential order. This study has thus provided important clues in and shed new light on the interpretation of multiple melting with respect to polymorphism in polymers. Relationships between the low-melting and high-melting lamellae in cold-crystallized polyketone polymer have been thoroughly explored. Received: 9 January 2001/Accepted: 3 February 2001  相似文献   

19.
The role of hydrophilic poly(vinylpyrrolidone-graft-acrylonitrile) (PGA) copolymer and the plasticization effect of water in melting behavior of polyacrylonitrile (PAN)-PGA blend were investigated. The PAN-rich PGA blend was obtained by in situ polymerization of the PAN homopolymer and the PGA copolymer. Depression of the melting point of PAN in the presence of the PGA occurred, thereby involving an endothermic transition of the wet blend powder at atmospheric pressure. This was due to a plasticization effect of water inducted into PAN matrix by the PGA. X-ray scattering showed that in the blend powder the crystalline phase of PAN was unaffected by PGA and the amorphous phase of PAN contained PGA domain. On compressing with heating, the wet blend powder formed a transparent sheet, in which the crystalline structure of PAN was changed from hexagonal to orthorhombic lattice. The amount of PAN chain participating in thermal motion for melting varies with absorbed water content. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Melting behavior of poly(trimethylene terephthalate) (PTT) after isothermal crystallization from the melt state was studied using differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) techniques. The subsequent melting thermograms for PTT isothermally crystallized within the temperature range of 182-215 °C exhibited triple (for crystallization temperatures lower than ≈192 °C), double (for crystallization temperatures greater than ≈192 °C but lower than ≈210 °C), or single (for crystallization temperatures greater than ≈210 °C) endothermic melting phenomenon. These peaks were denoted peaks I, II, and III for low-, middle-, and high-temperature melting endotherms, respectively. For the triple melting phenomenon, it was postulated that the occurrence of peak I was a result of the melting of the primary crystallites, peak II was a result of the melting of recrystallized crystallites, and peak III was a result of the melting of the recrystallized crystallites of different stabilities. In addition, determination of the equilibrium melting temperature Tm0 for this PTT resin according to the linear and non-linear Hoffmann-Weeks extrapolation provided values of 243.6 and 277.6 °C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号