首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the fabrication and characterization of multi‐drug‐loaded microparticles are demonstrated for topical glaucoma therapy. Specifically, latanoprost (“LAT”) and dexamethasone (“DEX”) are loaded in monodisperse microparticles (diameter ≈150 μm) of a biodegradable polymer–poly (lactic‐co‐glycolic) acid (PLGA)—using capillary microfluidics coupled with solvent evaporation. Both individual (LAT in PLGA and DEX in PLGA) and combined (LAT and DEX in PLGA) microparticle formulations are demonstrated. The morphology, size distribution and in vitro release kinetics are studied, and in vitro mucoadhesion of the formulated microparticles is also assessed. In addition, discussion is placed in how precise knowledge of the particle composition enabled by the microfluidic fabrication method and in vitro release rate measurements allow for facile topical formulation design and dose optimization. Such precision‐fabricated, multi‐drug loaded, sustained‐release microparticles are envisioned to serve as a promising platform for topical administration of ocular drugs. This could potentially reduce the frequency of eyedrop‐based drug administration from several times a day to merely once a day (or less), thus greatly facilitating patient compliance and adherence to a strict therapeutic drug regimen.  相似文献   

2.
Owing to its higher concentration in cancer cells than that in the corresponding normal cells, glutathione (GSH) provides an effective and flexible mechanism to design drug delivery systems. Here a novel GSH‐responsive mesoporous silica nanoparticle (MSN) is reported for controlled drug release. In this system, manganese dioxide (MnO2) nanostructure, formed by the reduction of KMnO4 on the surface of carboxyl‐functionalized MSN can block the pores (MSN@MnO2). By a redox reaction, the capped MnO2 nanostructure can dissociate into Mn2+ in the presence of GSH molecules. The blocked pores are then uncapped, which result in the release of the entrapped drugs. As a proof‐of‐concept, doxorubicin (DOX) as model drug is loaded into MSN@MnO2. DOX‐loaded MSN@MnO2 shows an obvious drug release in 10 × 10?3 m GSH, while no release is observed in the absence of GSH. In vitro studies using human hepatocellular liver carcinoma cell line (HepG2) prove that the DOX‐loaded MSN@MnO2 can entry into HepG2 cells and efficiently release the loaded DOX, leading to higher cytotoxicity than to that of human normal liver cells (L02). It is believed that further developments of this GSH‐responsive drug delivery system will lead to a new generation of nanodevices for intracellular controlled delivery.  相似文献   

3.
Graphene—2D carbon—has received significant attention thanks to its electronic, thermal, and mechanical properties. Recently, nano‐graphene (nGr) has been investigated as a possible platform for biomedical applications. Here, a polymer‐coated nGr to deliver drugs to glioblastoma after systemic administration is reported. A biodegradable, biocompatible poly(lactide) (PLA) coating enables encapsulation and controlled release of the hydrophobic anticancer drug paclitaxel (PTX), and a hydrophilic poly(ethylene glycol) (PEG) shell increases the solubility of the nGr drug delivery system. Importantly, the polymer coating mediates the interaction of nGr with U‐138 glioblastoma cells and decreases cytotoxicity compared with pristine untreated nGr. PLA‐PEG‐coated nGr is also able to encapsulate PTX at 4.15 wt% and sustains prolonged PTX release for at least 19 d. PTX‐loaded nGr‐PLA‐PEGs are shown to kill up to 20% of U‐138 glioblastoma cells in vitro. Furthermore, nGr‐PLA‐PEG and CNT‐PLA‐PEG, two carbon nanomaterials with different shapes, are able to kill U‐138 in vitro as well as free PTX at significantly lower doses of drug. Finally, in vivo biodistribution of nGr‐PLA‐PEG shows accumulation of nGr in intracranial U‐138 glioblastoma xenografts and organs of the reticuloendothelial system.  相似文献   

4.
A dendritic amphiphilic block copolymer H40‐poly(d,l ‐lactide)‐block‐d‐α‐tocopheryl polyethylene glycol 1000 succinate (H40‐PLA‐b‐TPGS) is synthesized, which is then employed to develop a system of nanoparticles (NPs) loaded with docetaxel (DTX) as a model drug for cancer treatment due to its higher drug‐loading content and drug encapsulation efficiency, smaller particle size, faster drug release, and higher cellular uptake in comparison to the linear PLA polymer NPs and PLA‐b‐TPGS copolymer NPs. The drug‐loaded NPs are prepared by a modified nanoprecipitation method and characterized in terms of size and size distribution, surface morphology, drug release profile, and physical state of DTX. Cellular uptake of coumarin 6‐loaded NPs by MCF‐7 cancer cells is determined by flow cytometry and confocal laser scanning microscopy. The antitumor efficacy of the drug‐loaded NPs is investigated in vitro by MTT assay and in vivo by xenograft tumor model. The 72 h IC50 of the drug formulated in the PLA, PLA‐b‐TPGS, and H40‐PLA‐b‐TPGS NPs is found to be, 1.5 ± 0.3, 0.9 ± 0.1, and 0.15 ± 0.06 μg mL?1, which are 7.3, 12.2, and 73.3‐fold effective than 11.0 ± 1.2 μg mL?1 for Taxotere, respectively. Such advantages are further confirmed by the measurement of the tumor size and weight.  相似文献   

5.
This work reports an efficient and straightforward strategy to fabricate hybrid microsized containers with reduction‐sensitive and ultrasound‐responsive properties. The ultrasound and reductive sensitivity are visualized using scanning electron microscopy, with the results showing structural decomposition upon ultrasound irradiation and in the presence of reducing agent. The ultrasound‐responsive functionalities of hybrid carriers can be used as external trigger for rapid controlled release, while prolonged drug release can be achieved in the presence of reducing agent. To evaluate the potential for targeted drug delivery, hybrid microsized containers are loaded with the anticancer drug doxorubicin (Dox). Such hybrid capsules can undergo structural intracellular degradation after cellular uptake by human cervical cancer cell line (HeLa), resulting in Dox release into cancer cells. In contrast, there is no Dox release when hybrid capsules are incubated with human mesenchymal stem cells (MSCs) as an example of normal human cells. The cell viability results indicate that Dox‐loaded capsules effectively killed HeLa cells, while they have lower cytotoxicity against MSCs as an example of healthy cells. Thus, the newly developed intracellular‐ and ultrasound‐responsive microcarriers obtained via sol‐gel method and layer‐by‐layer technique provide a high therapeutic efficacy for cancer, while minimizing adverse side effect.  相似文献   

6.
The efficacy of antiprotozoal agents against intracellular infections is very often limited by an almost negligible access to the cellular level where the pathogens are hidden. As a result, high doses of the chemotherapy agents are needed to be administered, but the great incidence of severe adverse drug effects generally leads to pharmacotherapy failure. To enhance the pharmacological effect of the antiprotozoal and antifungal canthin-6-one, loading into biodegradable poly(octylcyanoacrylate) nanoparticles has been considered. The preparation of canthin-6-one nanoformulation (average size ≈170 nm) has been performed by a single-absorption procedure with high drug loading and little burst release as determined by RP-HPLC. Further characterization of this nanoformulation has been carry out by electrophoretic measurements, analysis of the surface thermodynamics of the nanoparticles, and 1H-NMR analysis. Nanoparticles loaded with canthin-6-one were characterized by a significant hydrophobicity and a great surface electrical charge under physiological conditions. These are two key physicochemical factors determining recognition by the reticuloendothelial system, resulting in a fast intracellular uptake by infected phagocytes. It is expected that this nanoformulation offers potential applications for an efficient canthin-6-one delivery to intracellular infections.  相似文献   

7.
Hydroxyapatite is biocompatible and used in various biomedical applications. Here, we generated hydroxyapatite nanoparticles (HNPs) of various sizes (40–200 nm) and demonstrated that they can be stably loaded with drugs or radioisotopes by exploiting the high-affinity HA–(poly)phosphonate interaction. Clinically available phosphonates, clodronate, and Tc-99m-methylene-diphosphonate (Tc-99m-MDP), were efficiently loaded onto HNPs within 15 min. Biodistribution of radiolabeled HNP-MDP-Tc99m in mice was monitored non-invasively using microSPECT-CT. Imaging and dosimetry studies indicated that the HNPs, regardless of size, were quickly taken up by Kupffer cells in the liver after systemic administration into mice. Clodronate loaded onto HNPs remained biologically active and were able to result in selective depletion of Kupffer cells. This method of drug or isotope loading on HA is fast and easy as it eliminates the need for additional surface modifications of the nanoparticles.  相似文献   

8.
The design of efficient drug nanocarriers necessitates a deep understanding of their interaction with targeted cells. Polymeric poly(lactic acid) (PLA) or poly(d ,l ‐lactic‐co‐glycolic acid) nanoparticles (NPs) with sizes lower than 200 nm are among the most employed nanocarriers in drug delivery. Their detection inside cells requires appropriate labeling for high‐resolution imaging techniques, which unfortunately often alter their physicochemical properties and biological fate. Moreover, nowadays no high‐resolution method allows precise detection simultaneously to the identification of NPs chemical composition in cells, which is of outmost interest to gain insights on their fate. Here, this challenge is addressed by using an innovative atomic force microscope coupled with a tunable infrared laser source (nanoIR). NanoIR is used to unambiguously identify PLA NPs of around 170 nm with high resolution. A reliable, nondestructive, and direct method able to precisely locate and chemically characterize PLA NPs within a cell without the need of labeling is presented.  相似文献   

9.
Self‐nanoemulsifying drug delivery system (SNEDDS) is recently studied for enhancing the bioavailability of hydrophobic drugs, such as resveratrol (RSV). However, the functional design of SNEDDS for the drug structural protection is not studied yet. Here, this paper presents an efficient approach by adding lignin (a kind of abundant biomass resource) to enhance the stability of trans‐RSV and meantime improve its oral bioavailability. Higher stability of trans‐RSV (just decreased 2% to cis‐RSV after 1 h under direct sunlight) is observed after loaded by lignin‐containing SNEDDS (RSV/SLS SNEDDS). Low toxicity, high transfer efficiency (apparent permeability coefficient >1 × 10−7 cm s−1), and bioavailability (1.371%) of RSV/SLS SNEDDS is successfully demonstrated in Caco‐2 cells and rat model, respectively. This study serves to illustrate a simple, versatile, environmental, and economic sustainability approach to the development of nanodelivery systems for light instability drugs.  相似文献   

10.
Small particle size and strong host–guest interactions are prerequisites in the field of nuclear‐targeting nanocarriers for overcoming the multidrug resistance of cancer cells. A novel scheme of synthesizing hybrid organic–inorganic nanocarriers with mesopores is introduced to enhance the delivery efficiency of therapeutic drugs. Specifically, inorganic silica and organic polydopamine (PDA) are integrated inside the pore framework by the assistance of organic silanes terminated by amino/thiol groups. Silica‐etching by hydrothermal treatment leads to the selective enrichment of bioadhesive PDA and size reductions for the hybrids (to ≈30 nm). Interestingly, a high drug loading capacity (523 µg mg−1 for doxorubicin hydrochloride), as well as pH/ glutathione dual‐responsive drug release properties, are realized by the nanocarriers, owing to their high surface area (825 m2 g−1) and the π‐stacking and/or hydrophobic–hydrophobic interactions stemming from PDA. More importantly, the conjugation of TAT peptide facilitates the intranuclear localization of the nanocarriers and the release of the encapsulated drugs directly within the nucleoplasm of the multidrug resistant MCF‐7/ADR cancer cells. Therefore, these results provide a controllable method of engineering high‐surface‐area nanocarriers with bioadhesive polymers on the pore surface for advanced drug delivery applications.  相似文献   

11.
Currently, many microbial infections have the potential to become lethal owing to the development of antimicrobial resistance by means of different mechanisms and mainly on the basis of the fact that many drugs are unable to reach therapeutic levels in the target sites. This requires the use of high doses and frequent administrations, causing adverse side effects or in some cases toxicity. The use of nanoparticle systems could help overcome such problems and increase drug efficacy. In the present study, we developed a new drug delivery system based on the use of biopolymeric nanovectors loaded with tobramycin (Tb), which is the standard antibiotic for the treatment of Cystic Fibrosis-associated P. aeruginosa lung infections. Tb-loaded biopolymeric nanoparticles composed by dextran sulfate (DS) and chitosan (CS) were prepared by ionotropic gelation. We optimized drug entrapment in DS/CS nanoparticles, obtaining particles of 170 nm and with a drug loading of 400 µg Tb/mg of nanoparticles. In accord with in vitro release experiments, such preparations were able to release approximately 25 % of their cargo in 60 h. In vitro, the antimicrobial efficacy of the drug delivery system on P. aeruginosa biofilm was tested and compared to the effects of free drug revealing that this formulation can reduce the viability of P. aeruginosa biofilms for 48 h with a single-dose administration.  相似文献   

12.
Small‐angle X‐ray scattering has been employed to study how the introduction of paracetamol and acetylsalicylic acid into a liposome bilayer system affects the system's nanostructure. An X‐ray scattering model, developed for multilamellar liposome systems [Pabst et al. (2000), Phys. Rev. E, 62 , 4000–4009], has been used to fit the experimental data and to extract information on how structural parameters, such as the number and thickness of the bilayers of the liposomes, thickness of the water layer in between the bilayers, size and volume of the head and tail groups, are affected by the drugs and their concentration. Even though the experimental data reveal a complicated picture of the drug–bilayer interaction, they clearly show a correlation between nanostructure, drug and concentration in some aspects. The localization of the drugs in the bilayers is discussed.  相似文献   

13.
This is the first report evaluating the nanoparticle delivery system for three antituberculosis drugs: isoniazid, rifampin, and streptomycin. The typical particle size is 250 nm. We studied accumulation of these drugs in human monocytes as well as their antimicrobial activity against Mycobacterium tuberculosis residing in human monocyte-derived macrophages. Nanoparticle encapsulation increased the intracellular accumulation (cell-association) of all three tested drugs, but it enhanced the antimicrobial activity of isoniazid and streptomycin only. On the other hand, the activity of encapsulated rifampin against intracellular bacteria was not higher than that of the free drug.  相似文献   

14.
Characterization of drug–membrane interactions is important in order to understand the mechanisms of action of drugs and to design more effective drugs and delivery vehicles. Raman spectra provide compositional and conformational information of drugs and lipid membranes, respectively, allowing membrane disordering effects and drug partitioning to be assessed. Traditional Raman spectroscopy and other widely used bioanalytical techniques such as differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR) typically require high sample concentrations. Here, we describe how temperature‐controlled, optical‐trapping confocal Raman microscopy facilitates the analysis of drug–membrane interactions using micromolar concentrations of drug, while avoiding drug depletion from solution by working at even lower lipid concentrations. The potential for confocal Raman microscopy as an effective bioanalytical tool is illustrated using tricyclic antidepressants (TCAs), which are cationic amphiphilic molecules that bind to phospholipid membranes and influence lipid phase transitions. The interaction of these drugs with vesicle membranes of differing head‐group charge is investigated while varying the ring and side‐chain structure of the drug. Changes in membrane structure are observed in Raman bands that report intra‐ and intermolecular order versus temperature. The partitioning of drugs into the membrane can also be determined from the Raman scattering intensities. These results demonstrate the usefulness of confocal Raman microscopy for the analysis of drug–membrane systems at biologically relevant drug concentrations. Effective tools for monitoring drug–membrane interactions are crucial for rational design of new drugs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Pulmonary administration offers excellent advantages over conventional drug delivery routes, including increasing therapeutics bioavailability, and avoiding long‐term safety issues. Formulations of nano‐in‐micro dry powders for lung delivery are engineered using (S)‐ibuprofen as a model drug. These biodegradable formulations comprise nanoparticles of drug‐loaded POxylated polyurea dendrimers coated with chitosan using supercritical‐fluid‐assisted spray drying. The formulations are characterized in terms of morphology, particle‐size distribution, in vitro aerodynamic particle pulmonary distribution, and glutathione‐S‐transferase assay. It is demonstrated that ibuprofen‐loaded nanoparticles can be successfully incorporated into microspheres with adequate aerodynamic properties, mass median aerodynamic diameter (1.86–3.83 μm), and fine particle fraction (28%–45%), for deposition into the deep lung. The (S)‐ibuprofen dry powder formulations show enhanced solubility, high swelling behavior and a sustained drug release at physiologic pH. Also, POxylated polyureas decrease the (S)‐ibuprofen toxic effect on cancer cellular growth. The 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium (MTS) assays show no significant cytotoxicity on the metabolic activity of human lung adenocarcinoma ephithelial (A549) cell line for the lowest concentration (1 × 10?3 m ), even for longer periods of contact with the cells (up to 120 h), and in the normal human dermal fibroblasts cell line the toxic effect is also reduced.  相似文献   

16.
Traditional chemotherapy generally results in systemic toxicity, which also limits drug levels at the area of need. Two ultrasound contrast agents (UCA), with diameters between 1–2 μm in diameter and shell thicknesses of 100–200 nm, composed of poly lactic-acid (PLA), one loaded by surface adsorption and the other loaded by drug incorporation in the shell, were compared in vitro for potential use in cancer therapy. These poly lactic-acid (PLA) UCA platforms contain a gas core that in an ultrasound (US) field can cause the UCA to oscillate or rupture. Following a systemic injection of drug loaded UCA with external application of US focused at the area of interest, this platform could potentially increase drug toxicity at the area of need, while protecting healthy tissue through microencapsulation of the drug. In vitro toxicity in MDA-MB-231 breast cancer cells of the surface-adsorbed and shell-incorporated doxorubicin (Dox) loaded UCA were examined at 5 MHz insonation using a pulse repetition frequency of 100 Hz at varying pressure amplitudes. Both platforms resulted in equivalent cell death compared to free Dox and US when insonated at peak positive pressure amplitudes of 1.26 MPa and above. While no significant changes in cell death were seen for surface adsorbed Dox-UCA with or without insonation, cell death using the platform with Dox incorporated within the shell increased from 16.12% to 25.78% (p = 0.0272), approaching double the potency of the platform when insonated at peak positive pressure amplitudes of 1.26 MPa and above. This mechanism is believed to be the result of UCA rupture at higher insonation pressure amplitudes, resulting in more exposed drug and shell surface area as well as increased cellular uptake of Dox containing polymer shell fragments. This study has shown that a polymer UCA with drug housed within the shell may be used for US-triggered cell death. US activation can be used to make a carrier significantly more potent once in the area of need.  相似文献   

17.
Thermo‐chemotherapy combining photothermal therapy (PTT) with chemotherapy has become a potent approach for antitumor treatment. In this study, a multifunctional drug‐delivery nanoplatform based on polyethylene glycol (PEG)‐modified mesoporous silica‐coated bismuth selenide nanoparticles (referred to as Bi2Se3@mSiO2‐PEG NPs) is developed for synergistic PTT and chemotherapy with infrared thermal (IRT) imaging of cancer cells. The product shows no/low cytotoxicity, strong near‐infrared (NIR) optical absorption, high photothermal conversion capacity, and stability. Utilizing the prominent photothermal effect, high‐contrast IRT imaging and efficient photothermal killing effect on cancer cells are achieved upon NIR laser irradiation. Moreover, the successful mesoporous silica coating of the Bi2Se3@mSiO2‐PEG NPs cannot only largely improve the stability but also endow the NPs high drug loading capacity. As a proof‐of‐concept model, doxorubicin (DOX) is successfully loaded into the NPs with rather high loading capacity (≈50.0%) via the nanoprecipitation method. It is found that the DOX‐loaded NPs exhibit a bimodal on‐demand pH‐ and NIR‐responsive drug release property, and can realize effective intracellular drug delivery for chemotherapy. The synergistic thermo‐chemotherapy results in a significantly higher antitumor efficacy than either PTT or chemotherapy alone. The work reveals the great potential of such core–shell NPs as a multifunctional drug‐delivery nanosystem for thermo‐chemotherapy.  相似文献   

18.
Poly(N‐vinylcaprolactam)‐based biodegradable microgels are prepared for drug delivery application via precipitation polymerization using diacetone acrylamide (DAAM) and dimethyl itaconate (IADME) as comonomers. The microgel particles are subsequently crosslinked by addition of adipic acid dihydrazide, which reacts with the ketone groups of DAAM. Itaconic acid (IA) groups are generated by the hydrolysis of IADME units inside the microgels resulting into both pH and temperature sensitive microgel particles. Volume phase transition temperature of the obtained microgels is influenced by both IA content and pH of the surrounding medium. Due to the incorporation of hydrazone linkages, the microgels show degradation under acidic conditions. These microgels can effectively encapsulate doxorubicin (DOX) as a model drug and show low DOX leakage under physiological conditions while rapid DOX release is observed at low pH. The results of the cytotoxicity assay further display that the DOX‐loaded microgels exhibit effective antitumor activity against HeLa cells demonstrating their great potential as drug delivery carriers for cancer therapy.  相似文献   

19.
The synthesis of silica‐based colloidosomes with a polymer core obtained via inverse Pickering emulsification and their use as an implantable drug delivery system in zebrafish are described. Silica nanoparticles act as a stabilizer of a water‐in‐oil emulsion creating aqueous droplets with a silica shell. The core of the colloidosomes is polymerized resulting in tough particles. Colloidosomes loaded with model drugs show a release profile dependent on the porosity of the silica nanoparticles. Studying the effect of drugs on zebrafish development and tail regeneration is a new and emerging field in biomedical research. The in vivo delivery and bioactivity of retinoic acid from single implanted colloidosomes in partially amputated caudal fins are shown at the phenotype and genotype level. The colloidosomes are biocompatible since no signs of inflammation are observed. With these initial studies, the use of colloidosomes as single implantable beads is demonstrated for the local in vivo release of bioactive drugs. It is envisioned that these single particles can be applied for a broad range of hydrophobic drugs.  相似文献   

20.
The rapid identification for drugs‐of‐abuse in airports is of critical importance. In this study we demonstrate the viability of Raman spectroscopy for the rapid identification of illicit substances in their containers in an airport environment. Raman spectra of drugs‐of‐abuse in situ were collected using portable Raman spectrometers; this technique offers distinct advantages to government agencies, first responders and forensic scientists working in the security field. We have demonstrated that the spectrometers are able to collect the spectra of suspect powders, including cocaine HCl and d‐amphetamine sulphate with unknown constituents rapidly and with a high degree of discrimination. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号