首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel amorphous polyamide/montmorillonite nanocomposite based on poly(hexamethylene isophthalamide) was successfully prepared by melt intercalation. Wide angle X-ray diffraction and transmission electron microscopy showed that organoclay containing quaternary amine surfactants with phenyl and hydroxyl groups was delaminated in the polymer matrix resulting in well-exfoliated morphologies even at high montmorillonite content. Differential scanning calorimetry results indicated that clay platelets did not induce the formation of a crystalline phase in this amorphous polymer. Tensile tests demonstrated that the addition of nanoclay caused a dramatic increase in Young's modulus (almost twofold) and yield strength of the nanocomposites compared with the homopolymer. The nanocomposites exhibited ductile behavior up to 5 wt % of nanoclay. The improvement in Young's modulus is comparable with semicrystalline aliphatic nylon 6 nanocomposites. Both the main chain amide groups and the amorphous nature of the polyamide are responsible for enhancing the dispersion of the nanofillers, thereby, leading to improved properties of the nanocomposites. The structure-property relationship for these nanocomposites was also explored. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2605–2617, 2008  相似文献   

2.
Clay–polyimide [3,3′, 4,4′‐benzophenone tetracarboxylic dianhydride–4,4′‐oxydianiline (BTDA–ODA)] nanocomposites were synthesized from ODA‐modified montmorillonite (organoclay) and poly(amic acid). The layered silicates of organoclay were intercalated by polyimide (BTDA–ODA), as confirmed by X‐ray diffraction and by transmission electron microscopy, and the tensile mechanical properties of the nanocomposites were measured. It was found that the modulus and the maximum stress of these organoclay/BTDA–ODA nanocomposites were much higher than those of pure BTDA–ODA: a twofold increase in the modulus and a one‐half‐fold increase in the maximum stress in the case of 7/93 organoclay–BTDA‐ODA. In addition, the elongation‐for‐break of organoclay/BTDA–ODA nanocomposites is even slightly higher than that of pure BTDA–ODA, which is a sharp contrast to that of conventional inorganics‐filled polymer composites. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2873–2878, 2000  相似文献   

3.
High‐density polyethylene (HDPE) and nanosilica nanocomposites were prepared for SiO2 content up to 15 wt%. Microstructural characterization evidenced a homogenous distribution of silica aggregates with a mean size increasing with the filler content finally resulting in a rheological percolation between 7.5 and 10 wt%. Nanoparticles did not induce any significant impact on the matrix crystallinity but led to a real improvement on elastic properties accompanied with a large embrittlement above the percolation threshold. The effect of annealing near HDPE melting temperature was studied. Differential scanning calorimetry, X‐ray diffraction, and small‐angle X‐ray scattering analyses showed a significant change in the HDPE microstructure after annealing at 125°C. A large increase in the crystallinity (from 68 to 76%) and a clear improvement of Young's modulus (by 55%) were observed prior to polymer degradation. A valuable impact of silica particles on thermal stability was also obvious regarding the evolution of elastic properties for extended exposure times (850–1,200 h). © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 535–546  相似文献   

4.
Nonmodified multiwalled carbon nanotubes (MWCNTs)/sulfonated polyoxadiazole (sPOD) nanocomposites are successfully prepared by a facile solution route. The pristine MWCNTs are dispersed in a sPOD solution, and the mixtures are fabricated into thin films by solution casting. The homogeneous dispersion of nanotubes in the composites is confirmed by transmission electron microscopy. The mechanical properties, thermal stability, and electrical conductivity are investigated. Tensile strength, elongation at break, and tensile energy to break are shown to increase by more than 28, 45, and 73%, respectively, by incorporating up to 1.0 wt % pristine MWCNTs. The experimental values for sPOD/MWCNTs composite stiffness are compared with Halpin‐Tsai and modified Halpin‐Tsai predictions. The storage modulus is found to increase up to 10% at low CNT loading. The composite films, which have an outstanding thermal stability, show an increase of up to 57 °C in the initial degradation temperature. The addition of 1.0 wt % MWCNTs increases the electrical conductivity of the sPOD matrix by two orders of magnitude. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

5.
Nanocomposites of polyethylene (HDPE) and poly(ethylene‐co‐1‐octene) thermoplastic elastomers, both containing boehmites with variable sizes, shapes, and aspect ratios (1–20), were prepared by means of in situ olefin polymerization and melt compounding. The in situ olefin polymerization in the presence of boehmite nanorods afforded nanocomposites containing 4–8 wt % of boehmite. In an alternative process, the in situ olefin polymerization was used to produce polyolefins with high boehmite content of 50 wt % as masterbatches for polyolefin melt compounding with ethylene homo‐ and copolymers. The addition of the boehmite nanofillers improved the stiffness without sacrificing high elongation at break. The stiffness, as expressed by Young's modulus, increased with increasing boehmite aspect ratio. In case of thermoplastic elastomer nanocomposites the increase of stiffness was accompanied by a simultaneous increase of elongation at break. According to transmission electron microscopy (TEM), fine dispersion of the polar boehmite nanorods and nanoplatelets within the nonpolar hydrocarbon polymer matrix was obtained without requiring the addition of special dispersing agents or functionalized polyolefin compatibilizers. The comparison of melt compounding of polyethylene with boehmites or polyethylene/boehmite masterbatches revealed that compounding of masterbatches prepared by in situ polymerization filling afforded much finer and more uniform nanoboehmite dispersions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2755–2765, 2008  相似文献   

6.
This article discusses the influence of the oligomeric resin, hydrogenated oligo(cyclopentadiene) (HOCP), on the morphology, and thermal and tensile mechanical properties of its blends with isotactic poly(4-methylpentene-1) (P4MP1). The P4MP1 and HOCP are found not miscible in the melt state. P4MP1/HOCP blends after solidification contain three phases: the crystalline phase of P4MP1, an amorphous phase of P4MP1, and an amorphous phase of HOCP. From optical micrographs obtained at 150°C, it is found that the solidified blends show a morphology constituted by P4MP1 microspherulites and small HOCP domains homogeneously distributed in intraspherulitic regions. DSC and DMTA results show that the blends present two glass transition temperatures (Tg) equal to the Tgs of the pure components. The tensile mechanical properties have been investigated at 20, 60, and 120°C. At 20°C both the HOCP oligomer and the amorphous P4MP1 are glassy, and it is found that all the blends are brittle and the stress–strain curves have equal trends. At 60°C the HOCP oligomer is glassy, whereas the amorphous P4MP1 is rubbery. The tensile mechanical properties at 60°C are found to depend on blend composition. It is found that the Young's modulus, the stresses at yielding and break points slightly decrease with HOCP content in the blends and these results are related to the decrease of blend crystallinity. The decrease of the elongation at break is accounted for by the presence of glassy HOCP domains that act as defects in the P4MP1 matrix, hampering the drawing. At 120°C both the amorphous phases are rubbery. It is found decreases of Young's modulus, stresses at yielding and break points. These results have been related to the decrease of blend crystallinity and to the increase of the total rubbery amorphous phase. Moreover, it is found that the blends present elongations at break equal to that of pure P4MP1. This constancy is attributed to: (a) at 120°C the HOCP domains are rubbery and their presence seems not to disturb the drawing of the samples; (b) a sufficient number of the tie-molecules and entanglements of P4MP1 present in the blends. In fact, although the numbers of tie-molecules and entanglements decrease in the blends, increasing the HOCP oligomer, they seem to be enough to keep the material interlaced and avoid earlier rupture. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1269–1277, 1997  相似文献   

7.
Polyesters based on polyols and sebacic acid, known as poly(polyol sebacate)s (PPS), are attracting considerable attention, as their properties are potentially useful in the context of soft‐tissue engineering applications. To overcome the drawback that PPSs generally display rather low strength and stiffness, we have pursued the preparation of nanocomposites based poly(mannitol sebacate) (PMS), a prominent example of this materials family, with cellulose nanocrystals (CNCs). Nanocomposites were achieved in a two‐step process. A soluble, low‐molecular‐weight PMS pre‐polymer was formed via the polycondensation reaction between sebacic acid and D‐mannitol. Nanocomposites with different CNC content were prepared by solution‐casting and curing under vacuum using two different profiles designed to prepare materials with low and high degree of crosslinking. The as‐prepared nanocomposites have higher stiffness and toughness than the neat PMS matrix while maintaining a high elongation at break. A highly crosslinked nanocomposite with a CNC content of 5 wt % displays a sixfold increase in Young's modulus and a fivefold improvement in toughness. Nanocomposites also exhibit a shape memory effect with a switch temperature in the range of 15 to 45 °C; in particular the materials with a thermal transition in the upper part of this range are potentially useful for biomedical applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3123–3133  相似文献   

8.
Polyethylene (PE)‐layered vermiculite (VMT) nanocomposites were fabricated via direct melt compounding in a twin‐screw extruder followed by injection molding. Exfoliated PE/VMT nanocomposites were readily prepared via in situ melt mixing of maleic anhydride modified VMT with PE. Maleic anhydride acts as either the intercalation agent for VMT or as a compatibilizer for the PE and VMT phases. X‐ray diffraction and transmission electron microscopic observations revealed the formation of exfoliated PE/VMT nanocomposites. The experimental results showed that the storage modulus and strength of nanocomposites tend to increase with an increasing VMT content. Nearly 25.35% increment in the tensile strength and 50% increment in the storage modulus were achieved by incorporating 4 wt % VMT into PE. The thermal properties of the nanocomposites were investigated by dynamic mechanical analysis and differential scanning calorimetry. The glass‐transition temperature of PE/VMT nanocomposites appeared to increase upon the introduction of VMT into the PE matrix. The effects of maleic anhydride addition on the formation of the PE/VMT nanocomposites are discussed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1476–1484, 2003  相似文献   

9.
An effective technique of using click coupled graphene to obtain high‐performance polymer nanocomposites is presented. Poly(ε‐caprolactone) (PCL)‐click coupled graphene sheet (GS) reinforcing fillers are synthesized by the covalent functionalization of graphene oxide with PCL, and subsequently the PCL‐GS as a reinforcing filler was incorporated into a shape memory polyurethane matrix by solution casting. The PCL‐click coupled GS has shown excellent interaction with the polyurethane matrix, and as a consequence, the mechanical properties, thermal stability, thermal conductivity, and thermo‐responsive shape memory properties of the resulting nanocomposite films could be enhanced remarkably. In particular, for polyurethane nanocomposites incorporated with 2% PCL‐GS, the breaking stress, Young's modulus, elongation‐at‐break, and thermal stability have been improved by 109%, 158%, 28%, and 71 °C, respectively. This click coupling protocol offers the possibility to fully combine the extraordinary performance of GSs with the properties of polyurethane. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

10.
A thermoplastic, poly(ethersulfone) (PES) was used to modify a bisphenol‐F based epoxy resin cured with an aromatic diamine. The initial mixtures before curing, prepared by melt mixing, were homogeneous. Scanning electron microscopy (SEM) micrographs of solvent‐etched fracture surfaces of the cured blends indicated that phase separation occurred after curing. The cryogenic mechanical behaviors of the epoxy resins were studied in terms of tensile properties and Charpy impact strength at cryogenic temperature (77 K) and compared to their corresponding behaviors at room temperature (RT). The addition of PES generally improved the tensile strength, elongation at break, and impact strength at both RT and 77 K except the RT tensile strength at 25 phr PES content. It was interesting to observe that and the maximum values of the tensile strength, elongation at break, and impact strength occurred at 20 phr PES content where a co‐continuous phase formed. Young's modulus decreased slightly with the increase of the PES content. Moreover, the tensile strength and Young's modulus at 77 K were higher than those at RT at the same composition, whereas the elongation at break and impact strength showed the opposite results. Finally, the differential scanning calorimetry analysis showed that the glass transition temperature (Tg) was enhanced by the addition of PES. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 612–624, 2008  相似文献   

11.
Polyamide 6 (PA6)/multi‐walled carbon nanotubes (MWCNT) nanocomposites were produced by diluting a masterbach containing 20 wt % nanotubes using melt mixing. The influence of the addition of well dispersed MWCNT (as indicated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM)) on the thermal transitions, and crystallization behavior of the PA6 matrix is investigated. Differential scanning calorimetry (DSC) results show a reduction in heat capacity jump at the glass transition which is interpreted by an immobilized interfacial layer near the nanotubes. Furthermore, both DSC and X‐ray diffraction (XRD) measurements indicate that nanotubes favor the formation of the α crystalline form of PA6. These findings are correlated with the observed improvement of the storage modulus as revealed by dynamic mechanical thermal analysis (DMTA). Additionally, a new crystallization peak appears when MWCNT are added, and is attributed to the formation of a different morphology of the same type crystallite around the nanotubes walls (trans‐crystallinity). Finally, water sorption measurements show an increase of water content, normalized to the amorphous polymer fraction, in the nanocomposites. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 764–774, 2009  相似文献   

12.
The thermomechanical properties of anion exchange polymers based on polysulfone (PSU) quaternized with trimethylamine (TMA) or 1,4‐diazabicyclo[2.2.2]octane (DABCO) and containing hydroxide or chloride anions by tensile stress–strain tests and dynamic mechanical analysis (DMA) have been determined. The reported mechanical properties included the Young's modulus, tensile strength, and elongation at break from tensile tests and the storage and loss modulus and glass transition temperature from DMA. The anion exchange membranes behaved as stiff polymers with Young's modulus in the order of 1 GPa, relatively with high strength (about 30 MPa) and low elongation at break (around 10%) was observed. Tensile tests were also made with membranes exchanged with hydrogen‐carbonate and carbonate anions to control the absence of important carbonation of the OH form. The glass transition temperatures were of the order of 150 °C (PSU‐TMA) or 200 °C (PSU‐DABCO) for the hydroxide form, confirmed by differential scanning calorimetry; they increase further by about 50 K, when hydroxide ions are replaced by chloride. This result and the increase of the storage modulus could be interpreted by the higher hydration of hydroxide ions and the plasticizing effect of water, which reduced the Van der Waals interactions between the macromolecular chains. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1180–1187  相似文献   

13.
The mechanical properties of linear and V‐shaped compositional gradient copolymer of styrene and n‐butyl acrylate with composition of around 55 wt % styrene were investigated by comparing with their block copolymer counterparts. Compared with their block copolymer counterparts, the gradient copolymers showed lower elastic modulus, much larger elongation at break, and similar ultimate tensile strength at room temperature. This performance could be ascribed to that the local moduli continuously change from the hardest nanodomains to the softest nanodomains in the gradient copolymer, which alleviates the stress concentration during tensile test. Compared with the V‐shaped gradient (VG) copolymer, the linear gradient copolymer showed much higher elastic modulus but lower elongation at break. The mechanical properties of the gradient copolymers were more sensitive to the change in temperature from 9 °C to 75 °C. With recovery temperature increased from 10 °C to 60 °C, the strain recovery of VG copolymer would change steadily from 40% to 99%. However, the elastic recovery of linear and triblock copolymer was poor even at 60 °C. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 860–868  相似文献   

14.
The advantages of cyanate esters (CEs) versus competitor systems such as epoxies and polyimides, as well as the great reinforcing potential of organoclays properly dispersed into a polymeric matrix, have been examined in a series of polycyanurate (PCN)/montmorillonite (MMT) nanocomposites prepared under appropriate polymerization conditions. The curing schedule applied resulted in gradual propagation of polymerization. Through this procedure, the intragallery curing rate becomes comparable to the extragallery one, allowing intercalation before gelation. Systems with clay loadings from 1 to 3% per weight were synthesized, and their morphology and mechanical properties were studied by means of scanning electron microscopy (SEM), atomic force microscopy (AFM), wide angle X‐ray scattering (WAXS), dynamic mechanical analysis (DMA), and tensile tests. Microscopy investigations revealed better dispersion for the 3 wt % system compared to smaller concentrations, in which aggregation and, in some cases, agglomeration were the conspicuous features. Roughness and area analyses revealed more homogeneous dispersion for this nanocomposite. Topology and 3D‐phase images further suggested considerable reduction of the average particle diameters. WAXS analysis showed that the interlayer spacing of nanocomposites was increased compared to pristine MMT, indicating the formation of intercalated structures. On the other hand, tensile strength and elongation at break values displayed abrupt diminution with MMT addition, while Young's modulus exhibited a slight but systematic increment with MMT content. The decreasing glass transition tendency observed for small clay loadings was reversed in the case of 3 wt %, while secondary transitions were practically unaffected by the presence of MMT. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1036–1049, 2008  相似文献   

15.
This article reports on the fabrication of oriented composite fibers between polylactide (PLA) and multiwall carbon nanotube (MWNT). The fibers were fabricated using a custom‐built melt fiber‐drawing setup. The influence of processing parameters on the final fiber diameter and on the orientation were characterized and optimized. Composite fibers were fabricated at various MWNT contents. Addition of low amounts of MWNT (0.25–1 wt %) to PLA did not have a significant effect on the diameters of the fibers. Observations of the composite morphology under STEM indicated preferential orientation of the MWNTs along the draw direction of the fibers. Increasing amounts of MWNTs was found to increase crystallization kinetics and content. The crystalline content had a direct and profound implication on the mechanical properties with 0.5‐wt % MWNT fibers having the highest crystalline content and also the highest Young's modulus. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 477–484  相似文献   

16.
Summary: Stearic acid modified nano hydroxyapatite (n-SHA) filled polyoxymethylene (POM) nanocomposites were prepared by melt mixing method for bone tissue replacement and regeneration applications. Contact angle measurements of POM nanocomposites were carried out to understand the effect of n-SHA addition on the hydrophobicity of nanocomposites. The mechanical properties like tensile strength, Young's modulus and elongation at break were found to be increased significantly by the incorporation of n-SHA into the POM matrix. The bone-bonding ability of the nanocomposites was evaluated by examining the apatite formation on their surface after soaking in simulated body fluid (SBF) and apatite formation was studied by atomic force microscopy (AFM). The protein adhesion studies revealed the enhanced biocompatibility of the nanocomposites due to the presence of n-SHA nanofillers on the surface and it provides favorable binding sites for protein adsorption. The significant improvement in the biocompatibility as well as mechanical, thermal and hydrophobic properties of the POM nanocomposites makes it a potential future material for bone implantation.  相似文献   

17.
Using a high loading of synthetic precipitated amorphous white silica nanofiller, an acrylonitrile–butadiene rubber containing 26% by weight acrylonitrile was crosslinked and its mechanical properties were measured. The silica surfaces were pre‐treated with bis(3‐triethoxysilylpropyl)tetrasulfide (TESPT) to chemically adhere silica to the rubber. To optimize the reaction between the tetrasulfane groups of TESPT and the rubber, accelerator and activator were added. The rubber was fully crosslinked and the hardness, tensile strength, stored energy density at break, elongation at break, tearing energy, and modulus increased substantially because of the filler. The bound rubber, crosslink density, tan δ, and glass transition temperature measurements indicated a strong interaction between the filler and rubber. This new method helped to substantially reduce the use of the curing chemicals and produce a safer and more cost‐effective rubber compound without compromising the good mechanical properties of the rubber, which are essential for long service life. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
PP/PP‐g‐MA/MMT/EOR blend nanocomposites were prepared in a twin‐screw extruder at fixed 30 wt % elastomer and 0 to 7 wt % MMT content. Elastomer particle size and shape in the presence of MMT were evaluated at various PP‐g‐MA/organoclay masterbatch ratios of 0, 0.5, 1.0, and 1.5. The organoclay dispersion facilitated by maleated polypropylene serves to reduce the size of the elastomer dispersed phase particles and facilitates toughening of these blend nanocomposites. The rheological data analysis using modified Carreau‐Yasuda model showed maximum yield stress in extruder‐made nanocomposites compared with nanocomposites of reactor‐made TPO. Increasing either MMT content or the PP‐g‐MA/organoclay ratio can drive the elastomer particle size below the critical particle size below which toughness is dramatically increased. The ductile‐brittle transition shift toward lower MMT content as the PP‐g‐MA/organoclay ratio is increased. The D‐B transition temperature also decreased with increased MMT content and masterbatch ratio. Elastomer particle sizes below ~1.0 μm did not lead to further decrease in the D‐B transition temperature. The tensile modulus, yield strength, and elongation at yield improved with increasing MMT content and masterbatch ratio while elongation at break was reduced. The modified Mori‐Tanaka model showed better fit to experimental modulus when the effect of MMT and elastomer are considered individually. Overall, extruder‐made nanocomposites showed balanced properties of PP/PP‐g‐MA/MMT/EOR blend nanocomposites compared with nanocomposites of reactor‐made TPO. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

19.
The properties and morphologies of UV‐cured epoxy acrylate (EB600) blend films containing hyperbranched polyurethane acrylate (HUA)/hyperbranched polyester (HPE) were investigated. A small amount of HUA added to EB600 improved both the tensile strength and elongation at break without damaging its storage modulus (E′). The highest tensile strength of 31.9 MPa and an elongation at break around two times that of cured pure EB600 were obtained for the EB600‐based film blended with 10% HUA. Its log E′ (MPa) value was measured to be 9.48, that is, about 98% of that of the cured EB600 film. The impact strength and critical stress intensity factor (K1c) of the blends were investigated. A 10 wt % HUA content led to a K1c value 1.75 times that of the neat EB600 resin, and the impact strength of the EB600/HPE blends increased from 0.84 to 0.95 kJ m?1 with only 5 wt % HPE addition. The toughening effects of HUA and HPE on EB600 were demonstrated by scanning electron microscopy photographs of the fracture surfaces of films. Moreover, for the toughening mechanism of HPE to EB600, it was suggested that the HPE particles, as a second phase in the cured EB600 film, were deformed in a cold drawing, which was caused by the difference between the elastic moduli of HPE and EB600. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3159–3170, 2005  相似文献   

20.
New thermoplastic polyurethaneureas (TPUU) based on polyisobutylene (PIB) and poly(tetramethylene oxide) (PTMO) segments have been synthesized possessing tensile properties comparable to conventional PTMO based TPUs. PIB based TPUU containing 35 weight (wt)% hard segment was synthesized by chain extension of H2N-Allyl-PIB-Allyl-NH2 with 4,4′ -methylene bis(phenylisocyanate) (MDI) and 1,4-butanediol (BDO) in toluene. The ultimate tensile strength (UTS) = 12 MPa and ultimate elongation = 70% were inferior to PTMO based polyurethane (UTS = 35 MPa, elongation at break = 600%). H2N-Allyl-PIB-Allyl-NH2 and HO-PTMO-OH in different proportions were chain extended in presence of MDI and BDO to obtain TPUUs containing 35 wt% hard segment. The polymers exhibited M ns = 84000–138000 with polydispersity indices (PDIs) = 1.7–3.7. The UTS = 23–32 MPa and elongation at break = 250–675% was comparable to that of PTMO based polyurethane and significantly higher than the PIB based TPUU with the same Shore hardness. The Young's modulus of the polymers was strongly dependent and directly proportional to the PIB wt% in the SS of the TPUUs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号