首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel halogen‐free flame retardant (FR) consisting of brucite, aluminum phosphate (AlP), and silane coupling agent (B/AlP/A) was prepared via co‐precipitation assembly technique. The morphology, chemical compositions, size distribution, and thermal stability of B/AlP/A were investigated. When used in ethylene‐vinyl acetate (EVA) resin, the B/AlP/A could significantly enhance the flame retardant and smoke suppression performance of the EVA composites, which is mainly attributed to the AIP. With 50 wt% FR loading, the peak heat release rate (PHRR) of EVA‐B/AlP/A (299.2 kW · m?2) is much lower than that of EVA‐B/A (387.4 kW · m?2). Moreover, B/AlP/A shows an excellent smoke suppression performance. For example, the smoke production rate is 0.017 m2 · g?1 that has been decreased by 72.1%, compared with B/A. The improvement arises from the amorphous AlP layer on brucite, which helps to create a firm and porous protective char layers on the burning EVA composites. Meanwhile, better mechanical property could be simultaneously obtained with the large FR amount. The fluffy surface of B/AlP/A has good compatibility with EVA and tangle more polymer chains, enhancing the mechanical properties. In a word, this simple and convenient method could pave the way for developing a more efficient and cost‐effective brucite‐based FR.  相似文献   

2.
The toughening effect of ethylene‐vinyl acetate rubbers (EVM) with maleated ethylene‐vinyl acetate copolymers (EVA‐g‐MAH) on the nylon 1010 was investigated. The addition of 5 phr (per hundred nylon 1010) EVM increased the elongation at break of nylon 1010 to a great extent. The notched Izod impact strength of nylon/EVM blends increased with increasing EVM content. Scanning electron microscope showed that the EVM particle size was around 0.5 μm when the EVM content was 5 phr and increased with increasing EVM content. After the addition of EVA‐g‐MAH to nylon/EVM (100/20) blend, the average diameter of EVM particles decreased from more than 1 μm to 0.5–0.6 μm. EVA‐g‐MAH could improve the adhesion between nylon 1010 and EVM. A sharp brittle‐ductile transition (BDT) was observed when the interparticle distance was about 0.2 μm, independent of the addition of EVA‐g‐MAH. The notched Izod impact strength of nylon/EVM blends at low temperatures was measured and the BDT shifted toward low temperatures with increasing EVM or EVA‐g‐MAH content. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 434–444, 2009  相似文献   

3.
In this comparative study, the effect of carbon black (CB) on the thermal ageing characteristics of poly(ethylene‐co‐vinyl acetate) (EVA) was investigated. EVA, containing 13% vinyl acetate (VA), and poly(ethylene‐co‐vinyl acetate)/carbon black mixture (EVA/CB) containing 13% VA and 1% CB were aged at 85°C in air up to 30 weeks. Sol‐gel analysis experiments were made to determine the percentage gelation of both virgin and aged samples. FT‐IR measurements were performed to follow the chemical changes which took place in the samples during ageing. Dynamic and isothermal thermogravimetric studies were performed for determination of the thermal stabilities of virgin and aged samples. Sol‐gel analysis results showed that EVA itself has a tendency to form a gel under thermal treatment, whereas EVA/CB never becomes a gel when being thermally aged under the same conditions. As a result of FT‐IR measurements, some oxidation products such as ketone, lactone and vinyl species were observed through thermal ageing of EVA. It is also clear that these kind of oxidation products did not appear to a considerable extent in EVA/CB. Thermal analysis experiments exhibit that thermal stability of EVA decreased through thermal ageing; whereas that of EVA/CB remained almost unchanged. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Additive manufacturing circumscribes numerous technologies that allow for the construction of three-dimensional parts by superimposing layers of material. These technologies have undergone greater development in recent years. In this work, using 3D additive printing technology, the samples are prepared using biodegradable wood-PLA composite by varying the layer height (0.08?mm, 0.16?mm, and 0.24?mm), infill (30%, 60%, and 90%) and three different patterns such as layer, triangle, and hexagon. Using universal testing machines tensile properties, energy absorption, and toughness of samples are evaluated as per ASTM standards. The results show that better values are achieved with increase in the infill percentage and layer pattern provides better strength and stiffness. A statistical linear regression model was successfully developed to predict the mechanical properties with an accuracy of 96% predicted in layer pattern when compared to other. Linear regression method helps to find the relationships between two sub-properties of mechanical property of different types of materials and helps to predict the properties of unknown materials.  相似文献   

5.
In this work, Fe‐montmorillonite (Fe‐MMT) is synthesized and used as a synergistic agent in ethylene vinyl acetate/magnesium hydroxide (EVA/MH) flame retardant formulations. The synergistic effect of Fe‐MMT with magnesium hydroxide (MH) as the halogen‐free flame retardant for ethylene vinyl acetate (EVA) is studied by thermogravimetric analysis (TGA), limiting the oxygen index (LOI), UL‐94, and cone calorimetry test. Compared with that of Na‐MMT, it indicates that the synergistic effects of Fe‐MMT enhance the LOI value of EVA/MH polymer and improve the thermal stability and reduce the heat release rate (HRR). The structure and morphology of nanocomposites are studied by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The mechanical properties of the EVA composites have also been studied here, indicating that the use of Fe‐MMT reduces the amount of inorganic fillers. MH hence enhances the mechanical properties of the EVA composite while keeping the UL‐94 V‐0 rating. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
A polyolefin with certified biocompatibility according to USP class VI was used by our group as feedstock for filament-based 3D printing to meet the highest medical standards in order to print personal protective equipment for our university hospital during the ongoing pandemic. Besides the chemical resistance and durability, as well as the ability to withstand steam sterilization, this polypropylene (PP) copolymer is characterized by its high purity, as achieved by highly efficient and selective catalytic polymerization. As the PP copolymer is suited to be printed with all common printers in fused filament fabrication (FFF), it offers an eco-friendly cost–benefit ratio, even for large-scale production. In addition, a digital workflow was established focusing on common desktop FFF printers in the medical sector. It comprises the simulation-based optimization of personalized print objects, considering the inherent material properties such as warping tendency, through to validation of the process chain by 3D scanning, sterilization, and biocompatibility analysis of the printed part. This combination of digital data processing and 3D printing with a sustainable and medically certified material showed great promise in establishing decentralized additive manufacturing in everyday hospital life to meet peaks in demand, supply bottlenecks, and enhanced personalized patient treatment.  相似文献   

7.
Poly(L ‐lactide)/multiwalled carbon nanotubes (PLLA/MWCNTs) nanocomposite recently attracts much attention because of its excellent comprehensive properties including improved thermostability, tensile strength, and conductivity. However, the nanocomposite exhibits similar brittleness compared with unmodified PLLA. In this work, a polar elastomer, that is, ethylene‐co‐vinyl acetate (EVA), was introduced into PLLA/MWCNTs nanocomposite. The selective distribution of MWCNTs and the effects of EVA on crystalline structure of PLLA were investigated using scanning electron microscope, transmission electron microscope, differential scanning calorimetry, and wide angle X‐ray diffraction. The results show that the presence of EVA induces the change of the distribution of MWCNTs in the nanocomposites, and consequently, the cold crystallization of PLLA is prevented. With the increase of EVA content, both the ductility and the impact resistance of PLLA/FMWCNTs are improved greatly, indicating the toughening effect of EVA on PLLA/MWCNTs nanocomposite. The decreased tensile strength and modulus can be compensated through annealing treatment. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

8.
In this work, three-dimensional (3D) printing system based on fused deposition modeling (FDM) is used for the fabrication of conductive polymer nanocomposites. This technology consists in the additive multilayer deposition of polymeric nanocomposite based on poly(lactic acid) (PLA) and graphene by means of a in house made low-cost commercial bench-top 3D printer. Further, 3D printed PLA/graphene nanocomposites containing 10 wt% graphene in PLA matrix were characterized for their mechanical, electrical and electromagnetic induction shielding properties of the nanocomposite. Furthermore X-ray computed micro-tomography analyses showed that printed samples have good dimensional accuracy and are significantly closer to the predefined design and the results of scanning electron microscopy (SEM) printed samples showed a uniform dispersion of graphene in PLA matrix The proposed material has uniquely advantageous when implemented in 3D printed structures, because incorporation of multifunctional graphene has been shown to substantially improve the properties of the resulting nanocomposite.  相似文献   

9.
The dynamic mechanical behavior of uncrosslinked (thermoplastic) and crosslinked (thermosetting) acrylonitrile butadiene rubber/poly(ethylene‐co‐vinyl acetate) (NBR/EVA) blends was studied with reference to the effect of blend ratio, crosslinking systems, frequency, and temperature. Different crosslinked systems were prepared using peroxide (DCP), sulfur, and mixed crosslink systems. The glass‐transition behavior of the blends was affected by the blend ratio, the nature of crosslinking, and frequency. sThe damping properties of the blends increased with NBR content. The variations in tan δmax were in accordance with morphology changes in the blends. From tan δ values of peroxide‐cured NBR, EVA, and blends the crosslinking effect of DCP was more predominant in NBR. The morphology of the uncrosslinked blends was examined using scanning electron and optical microscopes. Cocontinuous morphology was observed between 40 and 60 wt % of NBR. The particle size distribution curve of the blends was also drawn. The Arrhenius relationship was used to calculate the activation energy for the glass transition of the blends, and it decreased with an increase in the NBR content. Various theoretical models were used to predict the modulus of the blends. From wide‐angle X‐ray scattering studies, the degree of crystallinity of the blends decreased with an increasing NBR content. The thermal behavior of the uncrosslinked and crosslinked systems of NBR/EVA blends was analyzed using a differential scanning calorimeter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1556–1570, 2002  相似文献   

10.
In this comparative study, the effect of carbon black (CB) on the UV aging characteristics of poly(ethylene‐co‐vinyl acetate) (EVA) was investigated. EVA, containing 13% vinyl acetate (VA), and poly(ethylene‐co‐vinyl acetate)/carbon black mixture (EVA/CB), containing 13% VA and 1% CB, were aged by means of UV light with a wavelength in the vicinity of 259 nm, in air, up to 400 hr. Sol‐gel analyses were made to determine the percentage gelation of both virgin and aged samples. FT‐IR measurements were performed to follow the chemical changes which took place in the samples during aging. Dynamic and isothermal thermogravimetry studies were performed for determination of the thermal stabilities of virgin and aged samples. Sol‐gel analysis results showed that EVA itself has a tendency to form a gel under UV irradiation. EVA/CB, however, becomes a gel to a smaller extent, comparatively, under the same conditions. As a result of FT‐IR measurements, some oxidation products such as ketone, lactone and vinyl species were observed through UV ageing of EVA and EVA/CB. Thermal analysis experiments exhibited that the thermal stabilities of EVA and EVA/CB decreased, to a similar extent through UV aging. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Transparent inorganic‐polymer nanocomposite films are of tremendous current interest inemerging solar coverings including photovoltaic encapsulants and commercial greenhouse plastics, but suffer from significant radiative heat loss. This work provides a new and simple approach for controlling this heat loss by using mesoporous silica/quantum dot nanoparticles in poly(ethylene‐co‐vinyl acetate) (EVA) films. Mesoporous silica shells were grown on CdS‐ZnS quantum dot (QDs) cores using a reverse microemulsion technique, controlling the shell thickness. These mesoporous silica nanoparticles (MSNs) were then melt‐mixed with EVA pellets using a mini twin‐screw extruder and pressed into thin films of concentration variable controlled thickness. The results demonstrate that the experimental MSNs showed improved infrared and thermal wavebands retention in the EVA transparent films compared to commercial silica additives, even at lower concentrations. It was also found MSNs enhanced the quantum yield and photostability of the QDs, providing high visible light transmission and blocking of UV transmission of interest for next generation solar coatings. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 851–859  相似文献   

12.
We studied the interaction of water in poly(ethylene‐co‐vinyl acetate) of various vinyl acetate compositions and poly(vinyl acetate), on the basis of the infrared spectrum of the water dissolved therein. The spectrum shows a very sharp and distinct band at about 3690 cm?1 (named as A), and less‐sharp two bands around 3640 (B) and 3550 cm?1 (C), the A band being outstanding especially at a low vinyl acetate composition. As the vinyl acetate composition increases, the A band decreases in intensity relative to the C band, whereas the B band increases contrarily. Analysis of the spectral change has elucidated that one‐bonded water (of which one OH is hydrogen‐bonded to the C?O of an ester group and the other OH is free) and two‐bonded water (each OH of which is hydrogen‐bonded to one C?O) coexist in the copolymer and that two‐bonded water increases in relative population with increasing vinyl acetate composition. Dissolved water is entirely two‐bonded in poly(vinyl acetate), in which C?O groups are densely distributed in the matrix. We proved that dissolved water in polymers is hydrogen‐bonded through one or two OH groups to the possessed functional groups but does not cluster. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 777–785, 2005  相似文献   

13.
Toughening of poly( L ‐lactide) (PLLA) by elastomer attracts much attention in recent years; however, it is usually associated with the deterioration of modulus and/or strength, resulting in limitation in many applications of the material. In this work, functionalized multiwalled carbon nanotubes (FMWCNTs) were introduced into ethylene‐co‐vinyl acetate toughened PLLA blends. The effects of FMWCNTs content on crystalline structure of PLLA matrix and the morphology of the blends, as well as the selective distribution of FMWCNTs in the ternary nanocomposites were investigated using differential scanning calorimetry (DSC), wide angle X‐ray diffraction, scanning electron microscope, and transmission electron microscope. The results show that FMWCNTs exhibit excellent nucleation role in improving the cold crystallization behaviors of PLLA during the annealing and/or DSC heating processes. The results of mechanical property measurements demonstrate that the modulus, strength, and ductility of the blends can be further improved simultaneously through introducing FMWCNTs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Polypropylene/ethylene‐co‐vinyl acetate (PP/EVA) nanocomposites with functionalized multiwalled carbon nanotubes (FMWCNTs) have been prepared. The dissolution experiment, transmission electronic microscope, and scanning electronic microscope characterizations prove that, in the nanocomposites with sea–island morphology, although some FMWCNTs are observed in both PP and EVA phases, most of FMWCNTs distribute at the interface; however, in the nanocomposites with cocontinuous morphology, FMWCNTs mainly distribute in EVA phase. Further results based on (differential scanning calorimetry) measurements show that the different dispersion states of FMWCNTs, which are resulted by the different melt blending sequences, result in the different crystallization behaviors of PP matrix. The mechanical measurements show that FMWCNTs exhibit apparent reinforcement and toughening effects for immiscible PP/EVA blends, and such effects are greatly dependent upon the blending sequences. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1882–1892, 2010  相似文献   

15.
In this study, high electrical conductivity and flame retardant electrothermal ethylene‐vinyl acetate (EVA) films were fabricated by using carbon nanotubes‐wrapped ammonium polyphosphate (CAPP) and conductive carbon black (CCB). CAPP was used as a synergistic conductive filler and flame retardant to improve the electrical conductivity and fire safety of the electrothermal film at the same time. Besides, the heat release rate (HRR) and the total heat release (THR) of EVA‐5 decreased about 81.5% and 57.3% compared with those of pure EVA film, respectively. Moreover, by incorporating a small amount of CAPP, EVA‐5 can reach up to V‐0 rating with an limiting oxygen index (LOI) value of 31%. EVA film fabricated by CCB and CAPP as conductive material exhibited almost 10 times increment on electrical conductivity than that of same content for CCB alone. And time vs temperature profiles of EVA‐5 showed a stable trend over 3600 seconds without any offset at a given applied voltage of 15 V. Moreover, its excellent cycle heating performance indicated that the electrothermal film can be recycled, which meets the requirements of sustainable development. In a word, this novel strategy provides a simple and effective way to obtain a high conductive and fire safety electrothermal film.  相似文献   

16.
The flexibility of dose and dosage forms makes 3D printing a very interesting tool for personalized medicine, with fused deposition modeling being the most promising and intensively developed method. In our research, we analyzed how various types of disintegrants and drug loading in poly(vinyl alcohol)-based filaments affect their mechanical properties and printability. We also assessed the effect of drug dosage and tablet spatial structure on the dissolution profiles. Given that the development of a method that allows the production of dosage forms with different properties from a single drug-loaded filament is desirable, we developed a method of printing ketoprofen tablets with different dose and dissolution profiles from a single feedstock filament. We optimized the filament preparation by hot-melt extrusion and characterized them. Then, we printed single, bi-, and tri-layer tablets varying with dose, infill density, internal structure, and composition. We analyzed the reproducibility of a spatial structure, phase, and degree of molecular order of ketoprofen in the tablets, and the dissolution profiles. We have printed tablets with immediate- and sustained-release characteristics using one drug-loaded filament, which demonstrates that a single filament can serve as a versatile source for the manufacturing of tablets exhibiting various release characteristics.  相似文献   

17.
The transport behavior of uncrosslinked and crosslinked poly(ethylene‐co‐vinyl acetate) membranes has been investigated using normal alkanes as probe molecules, in the temperature range of 30–60 °C. Benzoyl peroxide was used for crosslinking the matrix. It has been observed that, a critical concentration of crosslinker is necessary for maximum solvent uptake, followed by a decrease at higher concentration. The effect of free volume on liquid transport was investigated by positron annihilation lifetime spectroscopy. The mechanism of transport has been found to deviate from the regular Fickian behavior. The dependence of the transport coefficients on crosslink density, nature of penetrants, and temperature was studied. The polymer–solvent interaction parameter, enthalpy, and entropy of sorption have also been estimated from the transport data. The affine and phantom models for chemical crosslinks were used to predict the nature of crosslinks. Finally, the experimental sorption data were compared with theoretical predictions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2470–2480, 2007  相似文献   

18.
Additive manufacturing and 3D printing in particular have the potential to revolutionize existing fabrication processes, where objects with complex structures and shapes can be built with multifunctional material systems. For electrochemical energy storage devices such as batteries and supercapacitors, 3D printing methods allows alternative form factors to be conceived based on the end use application need in mind at the design stage. Additively manufactured energy storage devices require active materials and composites that are printable, and this is influenced by performance requirements and the basic electrochemistry. The interplay between electrochemical response, stability, material type, object complexity and end use application are key to realising 3D printing for electrochemical energy storage. Here, we summarise recent advances and highlight the important role of methods, designs and material selection for energy storage devices made by 3D printing, which is general to the majority of methods in use currently.  相似文献   

19.
The diffusion and transport of organic solvents through crosslinked nitrile rubber/poly(ethylene‐co‐vinyl acetate) (NBR/EVA) blends have been studied. The diffusion of cyclohexanone through these blends was studied with special reference to blend composition, crosslinking systems, fillers, filler loading, and temperature. At room temperature the mechanism of diffusion was found to be Fickian for cyclohexanone–NBR/EVA blend systems. However, a deviation from the Fickian mode of diffusion is observed at higher temperature. The transport coefficients, namely, intrinsic diffusion coefficient (D*), sorption coefficient (S), and permeation coefficient (P) increase with the increase in NBR content. The sorption data have been used to estimate the activation energies for permeation and diffusion. The van't Hoff relationship was used to determine the thermodynamic parameters. The affine and phantom models for chemical crosslinks were used to predict the nature of crosslinks. The experimental results were compared with the theoretical predictions. The influence of penetrants transport was studied using dichloromethane, chloroform, and carbon tetrachloride. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1815–1831, 1999  相似文献   

20.
《Mendeleev Communications》2022,32(2):228-230
For the first time, complex geometry combustible structures of an ammonium perchlorate–polylactic acid composite have been successfully printed using fused deposition modeling (FDM). The structural and energetic capabilities of the printed structures are demonstrated. Combined with the ability to be produced by FDM printing, these combustible elements could afford many practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号